Сверхширокоугольные объективы: Пять причин купить сверхширокоугольный объектив

Содержание

Сверхширокоугольный объектив Мир-47

Использование широкоугольных объективов с матрицами разных размеров и программы обработки полученных изображений

Часто слышу, что критерием выбора камеры является наличие  широкоугольного объектива. Чем больше угол охвата, тем лучше. А то, — говорят мне, — бродил я по узким уличкам, и такая там роскошная архитектура, а я ничего снять не сумел. В общем, классическая ситуация: хочу Царь-пушку. И уж блоху — так подковать, чтобы по льду не скользила, а то, что она лапками шевелить перестала — подковы тяжелые — забывают. Со сверхширокоугольными объективами ситуация очень похожая, хотя вещь это, безусловно, очень интересная. Но большой угол приводит часто к совсем не тем результатам, которых от него подсознательно ждут.  Хотели запечатлеть все сразу, а на фотографии здание, которое трудно узнать. Проблема усугубляется еще тем, что когда мы выходим за пределы естественного восприятия, привычная прямолинейная проекция перестает быть естественной.

Сначала повторим некоторые азбучные истины. Изображение, получаемое обычным объективом,  эквивалентно изображению, получаемому с помощью дырочной камеры,  дырка которой находится на фокусном расстоянии от пластинки. Человеческий глаз охватывает неподвижным зрачком примерно 40 градусов, что соответствует фокусному расстоянию объектива 50 мм, работающего с кадром 24×36 мм. Проблем с более длиннофокусными объективами, как с  построением изображения, так и с восприятием не возникает. В конце концов, ситуация вполне естественная: бинокль, подзорная труба, замочная скважина, в конце концов. С более широкоугольными объективами все не так очевидно. Можно быстро вращать глазами, можно смотреть в кривое зеркало, но в случае прямолинейной проекции крайние лучи будут практически скользить по фотопластинке, и изображение будет сильно искажаться, хотя линии останутся прямыми. Я здесь не останавливаюсь на особенностях цифровой фотографии, когда матрице очень трудно регистрировать скользящие лучи. Эта проблема давно решена в конструкции так называемых обратных телеобъективов, и хотя изображение в них соответствует дырочке, расположенной очень близко от пластинки, реально лучи, выходящие из объектива, уже не параллельны входящим, и падают на матрицу не под столь острым углом. Проблема катастрофического ухудшения качества на краях кадра при работе со сверхширокоугольными объективами связана не столько с несовершенством конструкции объектива, сколько с самой  постановкой задачи: мы стремимся зарегистрировать скользящие лучи. Мне представляется, что стремление сделать сверхширокоугольные объективы, работающие в нормальной (прямолинейной, а в некоторых статьях ее называют прямоугольной) проекции, связано с желанием сохранить привычную проекцию в непривычных условиях. Альтернативой являются объективы «Рыбий глаз», дающие совсем другую проекцию, но при компьютерной обработке одна проекция может быть легко преобразована в другую, и необходимость сразу получить искомое изображение перестает быть решающим аргументом при выборе объектива цифровой камеры. Т.е. при цифровой обработке объективы «Рыбий глаз» могут успешно использоваться вместо сверхширокоугольных объективов, строящих изображение в прямолинейной проекции. Сравним два объектива с близкими фокусными расстояниями, но разными принципами построения изображения. Фокусное расстояние объектива Мир 47 и объектива Зенитар отличается всего на 4 мм. Внешне и оптические схемы кажутся похожими, но результаты разительно отличаются.

Обращаю внимание, что хотя светофильтры у обоих объективов ставятся после задней линзы, но у Зенитара он ставится вместо плоскопараллельной пластины. Поскольку толщина пластины и фильтра одинакова, то изменения в траектории хода лучей не происходит. Без фильтра или пластины этот объектив не удастся сфокусировать на бесконечность. У объектива Мир-47 фильтры ставятся как дополнительный элемент, их толщина достаточна мала, чтобы не внести существенных изменений в фокусировку.

Зенитар — это «Рыбий глаз», и строит изображение он в соответствии с принципом: равному углу соответствует равный отрезок изображения в фокальной плоскости. В результате края кадра кажутся прорисованными более детально. У объективов «Рыбий глаз» проблемы ухудшения качества по краям кадра связаны действительно со сложностью конструкции и трудностью создать идеальную оптическую схему.

В каталоге Canon самый широкоугольный «нормальный» объектив имеет фокусное расстояние 14 мм и угол обзора по длинной стороне кадра 104°. Если посмотреть на ЧКХ, приведенную в книжке Canon TF Lens Work II, объектива EF 14 mm f/2,8L USM, то мы увидим, что не только на расстоянии 20 мм от центра контраст тонких линий падает почти до нуля, и не спасает даже диафрагмирование, но и кривая изменения контраста имеет в промежутке между центром и краем кадра несколько локальных минимумов. Следующий объектив в каталоге Canon имеет фокусное расстояние 20 мм и относительное отверстие 1:2,8. Его ЧКХ также напоминает пляски пьяных гусениц и не внушает оптимизма по поводу качества на краях.  По формальным признакам наш герой, Мир-47, имеет точно такие же характеристики: фокусное расстояние 20 мм, угол зрения 94° по диагонали, 84° по горизонтали и 62° по вертикали,  относительное отверстие даже чуть лучше, 1:2,5. Про родословную известно только то, что небольшая партия была выпущена Красногорским заводом в 1982 году. По данным сайта Красногорского завода, расчет сделан ГОИ. А  выпускался объектив ЛОМО, а потом его производство было передано на Вологодский оптико-механический завод (ВОМЗ), чью продукцию я сегодня и тестирую.  По конструкции вологодский объектив отличается от красногорского.

КМЗ для своего объектива указывает разрешение по ТУ центр/край: 60:17 линий/мм.  К сожалению, этого ТУ у меня нет, а ГОСТ 25502-82 предполагает построение графика зависимости и, учитывая стремительное ухудшение разрешения к краю изображения, информация типа центр/край, когда неизвестно, где этот край, становится мало информативной, поскольку, если 17 линий/мм на расстоянии 19 мм от центра кадра, то объектив сравним с продукцией Canon; а если на расстоянии 21 мм — то много лучше. Напомню,   что диагональ кадра 43 мм, т. е. самый-самый угол находится на расстоянии 21,5 мм от центра кадра.

Заканчивая описание конструкции, немного остановлюсь на механике. У объективов с резьбовым соединением М42 при вращении кольца выбора диафрагмы ее диаметр не изменяется, а только перемещается упор ограничителя. Конструкция рассчитана таким образом, что не вращение кольца перемещает лепестки диафрагмы, а шток, на который нажимает аппарат в момент спуска затвора, чтобы закрыть диафрагму до рабочего положения. При использовании переходного кольца EOS-M42 шток все время нажат и диафрагма все время закрыта до рабочего положения. В этом случае при вращении кольца изменения диафрагмы ее лепестки часто залипают, дырка теряет правильную форму и значения диафрагмы не всегда устанавливаются одинаково. Поскольку при использовании с цифровыми камерами автоматика закрытия диафрагмы не используется, я в своем экземпляре удалил механизм толкателя и поставил более мощную пружину. В результате при вращении кольца установки диафрагмы диаметр дырки стал изменятся более предсказуемо 🙂

Чтобы проиллюстрировать возможности широкоугольной оптики, мы с Сергеем Щербаковым взяли аппарат Canon 5D с полноразмерной матрицей 24×36 мм и Canon 350D с матрицей размером 14,8×22,2 мм и нашу коллекцию широкоугольных объективов. С одной точки было снято здание. После этого полученные снимки сравнивались.Поскольку используемые объективы давали изображения в разных проекциях и по-разному искажали перспективу, мы в данном случае, «для чистоты эксперимента», решили сравнивать фотографии только в прямолинейной проекции, с максимально возможной компьютерной коррекцией искажений. Как правило, мы использовали программы, основанные пакете PanoTools, который разработал в 1998 году профессор физики Хельмут Дерш (Helmut Dersch).

Canon 5D

Вот что видит камера Canon 5D с точки съемки через объектив «рыбий глаз» Пеленг.


А такой угол охвата можно вытянуть из этого объектива в прямолинейной проекции

Мир 47. Исходный снимок.

Масштаб миниатюры 13% от оригинала.

Применим плагин Lens Correction из программы Adobe Photoshop

И после правки перспективных искажений и дисторсии получаем:

Миниатюра соответствует 13% от исходного размера.

Зенитар

Миниатюра соответствует 13% от исходного размера.

Есть множество способов преобразовать изображение полученное объективом «Рыбий глаз».

Например, воспользоваться плагином PTLens.

Можно править и проекцию, и перспективные искажения одновременно, однако, диапазона коррекции вертикальной преспективы немного не хватает для получения вертикальных линий стен.

Можно, как и в вышеприведенном примере коррекции снимка, сделанного Мир-47, воспользоваться Lens Correction:

Однако в этом случае не удается в один прием исправить бочкообразную дисторсию. И возникает, как и в предыдущем случае, необходимость применить плагин еще раз к уже преобразованному изображению.

Более перспективно, на мой взгляд, применение плагина Remap для пересчета в прямолинейную (Normal) проекцию:


HFOV — горизонтальный угол обзора

В результате получаем следующий снимок:

Миниатюра соответствует 13% от исходного размера.

Теперь исправляем вертикальную перспективу с помощью Lens Correction или PTPerspective

и в результате получаем :

Миниатюра соответствует 13% от исходного размера.

Естественно, за все надо платить, и если преобразовывать изображение, полученное объективом «Рыбий глаз» в прямолинейную проекцию, использование площади матрицы не столь эффективно, как при съемке обычным объективом.

А вот что дает объектив Sigma 24-70 при фокусном расстоянии 24 мм.

Миниатюра соответствует 13% от исходного размера.

Canon 350D

Теперь посмотрим, можем ли мы получить аналогичные углы обзора на меньшей матрице камеры Canon 350D. Естественно, круговых объективов «Рыбий глаз» для нее нет, но мы сейчас рассматриваем только нормальные проекции, да и при желании можно получить изображение типа даваемого 8 мм Пеленгом на матрице 24×36 на меньшей матрице, воспользовавшись насадкой на более длиннофокусный объектив.

Пеленг

Миниатюра соответствует 13% от исходного размера.

Максимальный охват в прямолинейной проекции можно получить воспользовавшись плагином PTLens, однако при этом качество краев будет неудовлетворительным

Поскольку этот вариант я не предлагаю сравнивать с другими, то размер миниатюры составляет 19% от изображения после преобразования.

Можно умерить пыл и не пытаться получить максимальный охват в этом плагине или воспользоваться плагинами Remap и Lens Correction.

Миниатюра соответствует 13% от изображения полученного после преобразования.

Зенитар


Миниатюра соответствует 13% от исходного размера.

Миниатюра соответствует 13% от изображения полученного после преобразования плагинами PTLens и Lens Correction.

На примере этого снимка покажу, что Adobe Photoshop — не единственная надстройка, позволяющая работать с программой PanoTools. Можно воспользоваться графическим интерфейсом к средствам создания панорам «Hugin». Для оптимизации загрузить в него единственный кадр и выбрать контрольные точки, лежащие на горизонтальных и вертикальных прямых. Например, левом снимке выбираем верхний участок водосточной трубы, а на правом — нижний участок той же трубы, и помечаем, что эти точки лежат на одной вертикальной линии.

Запускаем оптимизацию и сохраняем получившийся результат в прямолинейной проекции:


Миниатюра соответствует 13% от изображения полученного после преобразования
с помощью программы Hugin.

Canon 18-55, F=18 мм.


Миниатюра соответствует 13% от исходного размера.

После перспективной коррекции плагином Lens Correction.

Мир-47. После перспективной коррекции плагином Lens Correction:

Поскольку именно этот объектив является основным героем данной статьи, то на примере этого снимка посмотрим, насколько эффенктивно могут быть программно устранены хроматические аберрации. Я предпочитаю устранять их на этапе преобразования RAW файлов. Вот что получается, если воспользоваться Adobe Camera RAW:


При верстке изображение увеличено в два раза.

Как видно из приведенных снимков, сама по себе маленькая матрица не мешает получить изображения с теми же углами обзора, что и большая. Очевидно, что изображения по центру не зависят от размера матрицы, а только от разрешения объектива и размера пикселя. На краях ситуация куда менее однозначная, поскольку при большой матрице, разница край/центр более существенная. Сравним качество отображения одних и тех же объектов, расположенных по центру и на переферии кадра, при съемке разными объективами и камерами. Если съемка ведется одним объективом и разными камерами, то очевидно, что объекты находятся на одном расстоянии от центра, т. е. для 5D это отнюдь не самый край. Для удобства сравнения более мелкие снимки увеличены, чтобы масштаб объектов был везде одинаков. Естественно, увеличение не улучшает качество, но иногда более мелкий снимок при увеличении дает более резкое изображение, чем большой, сделанный «мягким» объективом. Однако, если необходимо выбрать объектив для съемки с фиксированной точки для последующей печати фотографии большого формата, то подобный подход имеет право на существование, поскольку трудно предсказать, во что превратится мелкий и резкий снимок при его увеличении.

Объектив и камера

Край

Центр

Зенитар,
F=16 мм,
Canon 5D
Мир=47,
F=20 мм,
5D
Sigma 24-70,
F=24 мм,
5D
Зенитар,
F=16 мм,
Canon 350D
Canon 18-55,
F=18 мм,
Canon 350D
Мир=47,
F=20 мм,
Canon 350D
Субъективные впечатления от получившейся таблицы.

Примерно равный угол дает объектив Sigma 24 мм на большой матрице и Зенитар на маленькой. Зенитар- резкий объектив с очень неплохим разрешением. Мелкий пиксель Canon 350D позволяет ему лучше реализовать свой потенциал. Если нам нужен угол охвата 50 градусов, то я бы расставил фотографии в следующем порядке: Мир-47 с камерой 5D, Зенитар с 350D, Canon 18-55 (F=18 мм) с 350D, Sigma 24-70 (F=24 мм) с 5D, Зенитар с 5D. В паре Зенитар с 350D и Canon 18-55 (F=18 мм) с 350D преимущество я отдал Зенитару за счет лучшего качества в центре и большего угла обзора при прочих равных. Еще раз замечу, что все очень субъективно, поскольку это не миры, и изменяющаяся облачность сильно влияла на контраст отдельных деталей изображения. В паре Canon 18-55 (F=18 мм) с 350D и Sigma 24-70 (F=24 мм) с 5D последняя проиграла за счет именно большей площади кадра, к краю у нее ухудшение характеристик оказалось значительнее. В этих снимках окно действительно находится на самом краю кадра, и чуть больший угол обзора Sigma не позволил ей выиграть в соревновании по съемке конкретного здания 🙂 В любом случае при съемке широкоугольным объективом придется мириться с неоднородным качеством по полю снимка. К сожалению, при пейзажной съемке сюжетно важная часть занимает часто всю площадь кадра. В свете вышеизложенного, если посмотреть на снимок, сделанный объективом Мир-47 и камерой 5D, чуть под другим ракурсом, когда окно приходится на самый край снимка, то на мой взгляд результаты лучше ожидаемых:-)


Мир-47 — самый край кадра

В заключение несколько снимков, которые демонстрируют эффективное использование огромной глубины резкости, даваемой объективом Мир 47.


Сверхширокоугольный зум-объектив FE 12–24 мм серии G | SEL1224G

FE 12-24mm F4 G

Поддержка сверхширокого угла для создания динамического пространственного изображения

Этот сверхширокоугольный зум-объектив 12–24 мм имеет самое малое фокусное расстояние среди полнокадровых объективов с байонетом E и разрешение G Lens по всей площади кадра при любых настройках диафрагмы. Он идеально подойдет для съемки пейзажей и архитектуры. Компактные размеры, а также тихая, быстрая и точная автофокусировка, делают этот объектив отличным решением для съемки фильмов и фото.

FE 12-24mm F4 G
Фотогалерея

Высокое разрешение при сверхширокоугольной съемке

Продуманная сверхширокоугольная оптика позволяет снимать масштабные кадры с поразительным разрешением и четкостью.

Компактность, легкость и мобильность

Новая конструкция позволила значительно уменьшить общую длину и размер фронтального элемента, при этом сохранив наилучшие оптические характеристики. Общий вес составляет всего 565 г (20 унций).

Быстрая и тихая автофокусировка для фото- и видеосъемки

В этом объективе используется передовой механихм фокусировки, который приводится в действие системой Direct Drive SSM (DDSSM) от Sony. В итоге вы получаете быструю и точную автофокусировку и плавную, тихую работу.

Простое управление и высокая надежность

Настраиваемая кнопка удержания фокусировки обеспечивает дополнительный контроль, а пыле- и влагостойкая конструкция гарантирует надежную работу даже в самых сложных условиях.

Конструкция объектива

Безупречный дизайн объектива 2 0B20 от Sony подчеркивает баланс высокого разрешения и прекрасного эффекта боке, помогающего раскрыть творческий замысел фотографа.

[1] Асферический тип [2] Сверхнизкодисперсионное стекло [3] Низкодисперсионное стекло

Таблица MTF

MTF (соотношение контрастности двух максимально близко расположенных линий) — способность объектива передавать детали.

[1] Контрастность (%) [2] Расстояние от оптического центра объектива (мм) [3] 12 мм [4] 24 мм [5] Пространственная частота [6] 10 пар линий/мм [7] 30 пар линий/мм [8] Полностью открытая диафрагма [9] Диафрагменное число f/8 [10] R — радиальные значения, T — тангенциальные значения

Элементы управления объектива

1. Кольцо зума / 2. Кнопка удержания фокусировки (настраиваемая) / 3. Бленда объектива / 4. Кольцо фокусировки / 5. Переключатель режимов фокусировки 

Совместимость FE 12-24mm F4 G

Подробная информация о соместимости камер и объективов находится по ссылке ниже.

Проект α Профессионал

Профессионалы российского рынка фотографии раскрывают вам свои секреты и делятся опытом работы с фотокамерами Sony. Вы можете посмотреть примеры их работ и поучаствовать в конкурсах, послушать уроки и обсудить свои достижения.

Технические характеристики и функции

  • Ультраширокоугольный зум-объектив G Lens

  • Динамичный, высокоточный контроль фокусировки объектива благодаря линейному приводу

  • Моторизованная система Direct Drive SSM для высокоточного и тихого управления объективом

  • Покрытие Sony Nano AR сокращает блики и посторонние отражения

  • Влаго- и пылезащищенный корпус

Минимальная дистанция фокусировки
0,28 м (0,92 фута)
Максимальный коэффициент увеличения (x)
0,14
Диаметр фильтра (мм)
— (не предусмотрен)
Вес
565 г (20 унций)

Оставьте комментарий