Электронный затвор фотоаппарата – Фотографический затвор — Википедия

Содержание

Механический и электронный затвор | Радожива

Эта статья — продолжение цикла статей о вопросах, поднятых ранее в статьях ‘Шум затвора‘ и ‘Недостатки современных DSLR камер‘.

Механический затвор

В современных цифровых камерах используются фокальные затворы шторно-щелевого типа с вертикальным ходом шторок. Это означает, что такой затвор расположен сразу перед матрицей фотоаппарата, состоит из шторок, которые двигаются вертикально (обычно сверху-вниз и обратно).

Ниже наглядно показано, как происходит спуск затвора:

Видео 1.

Обратите внимание на то, как сильно трясет зеркало после его подъема и возврата, а также на то, как чудовищно содрогаются шторки затвора. На видео видно, что шторки затвора состоят из нескольких частей (так называемые ламели или ‘жалюзи’).

Видео 2.

На этом видео можно заметить щель, которая формируется во время движения шторок затвора.

Видео 3.

Полноформатная камера и кропнутая камера.

Видео 4.

Трясет не только зеркало и жалюзи затвора, но и лепестки диафрагмы.

И немножко рассуждений насчет затвора, на примере камеры Nikon D80.

Выдержка синхронизации этой камеры составляет 1/200 секунды. Это означает, что именно такой промежуток времени нужно шторкам затвора для прохождения расстояния, равного высоте матрицы.

Если нужно проводить съемку на выдержках длиннее или равной выдержке синхронизации, то затвор будет работать следующим образом:

  1. Открывается первая шторка, на это тратит 1/200 секунды.
  2. Проводится экспозиция, в это время матрица остается полностью открытой. Возьмем в качестве примера выдержку 1/60 секунды. Вторая шторка начнет свое движение через 1/60 секунды после начала движения первой шторки.
  3. Вторая шторка закрывается, на это тратится 1/200 секунды.
  4. Шторки поднимаются вместе, в начальное положение.

На таких выдержках легко синхронизировать вспышку и работу затвора. Обычно вспышка срабатывает после первой шторки (как только затвор полностью открывает матрицу), либо перед началом движения второй шторки (перед закрытием затвора). Например, импульс моей вспышки Nikon SB-910 имеет длительность от 1\800 с до 1\40.000 с в зависимости от мощности. Во время срабатывания вспышки матрица камеры полностью открыта и нет никаких проблем с синхронизацией.

Если нужно проводить съемку на выдержках короче выдержки синхронизации, то затвор будет работать следующим образом:

  1. Открывается первая шторка.
  2. Вторая шторка не ожидает полного открытия матрицы и начинает свое движение вслед за первой. Задержка второй шторки как раз и определяет время экспозиции. Возьмем в качестве примера самую короткую выдержку, допустимую для Nikon D80 — 1/4000 с. В таком случае вторая шторка начинает свое движение через 1/4000 с после начала движения первой шторки и таким образом две шторки двигаются вместе, формируя движущуюся щель, которая и производит экспозицию.
  3. Шторки поднимаются вместе в начальное положение.

На таких выдержках синхронизировать работу вспышки с затвором сложно. Если вспышка сработает только в какой-то определенный момент, то на снимке мы получим полосу, которая формируется щелью затвора. Чтобы обойти такое ограничение, применяют вспышки с высокоскоростной синхронизацией, которые «светят» все время движения обеих шторок, для избежания появления полос.

Интересно, но если мы проводим съемку на 1/60 секунды, то на самом деле затвору требуется куда больше времени на свою работу. Так, тратится 1/60 с на спуск первой шторки и ожидание второй, 1/200 с на движение второй шторки и как минимум еще 1/200 с на подъем обеих шторок в изначальное положение (идеальный случай, в реальности времени нужно больше). Итого 1/60 + 1/200 + 1/200 = 2/75 с. Если убрать ограничения на работу зеркала, диафрагмы и процессора камеры, то за одну секунду при идеальных условиях можно будет снять не больше 38 кадров, и это является механическим ограничением серийной съемки.

В то же время, камеры, использующие электронный затвор, которому не нужно тратить время на движения шторок, уже сейчас без проблем позволяет снимать со скоростью 60 кадров в секунду в режиме фото (в качестве примера посмотрите на Nikon 1 J1). Только представьте себе, как полезно было бы для фоторепортеров и фотографов снимающих спорт, фотографировать определенные события с такой огромной скоростью. Для примера, самая быстрая зеркальная камера на 2014 год — Canon 1DX, снимает максимум со скоростью 14 кадров в секунду, что в 4 раза ниже чем 60 к/с у некоторых беззеркальных камер с электронным затвором. Вот только беда, что современные камеры с электронным затвором имеют свои недостатки, например страдают ‘rolling shutter’ и т.д. и пока остается только мечтать про электронный затвор, обладающий положительными качествами механического затвора и огромной скоростью съемки.

Кстати, «реальную» скорость движения шторок затвора легко посчитать. Высота матрица Nikon D80 составляет 15,8 мм, шторка проходит это расстояние за 1/200 секунды, а ее скорость составляет 3,16 м/с или 11,38 км/ч, что совсем немного 🙂

Спасибо за внимание. Аркадий Шаповал.

radojuva.com

В чём разница между электронным и механическим затвором: nikonofficial — LiveJournal

Дорогие друзья, сегодня мы хотим рассказать, в чём разница между электронным и механическим затвором. В некоторых фотокамерах можно выбирать между спуском электронного и механического затвора. Электронный затвор позволяет управлять экспозицией, включая и выключая матрицу фотокамеры при срабатывании. В механическом затворе используются традиционная передняя и задняя шторки, расположенные перед матрицей, которые открываются и закрываются для регулировки экспозиции.


Автор: Александр Яковенко

Электронный затвор
Бесшумная работа

Его достоинство — бесшумная работа, поскольку во время установки экспозиции не перемещаются внутренние детали. Это бывает важно в случаях, когда звук спуска механического затвора может привлечь внимание фотографируемого объекта, например, при съёмке с близкого расстояния дикой природы, спортивных мероприятий или тогда, когда фотографу нужно оставаться незамеченным.

Повышенная частота кадров
В электронном затворе нет механических деталей, благодаря чему можно повысить частоту кадров по сравнению с частотой, получаемой при использовании механического затвора. Например, фотокамера Nikon 1 V3 может снимать со скоростью 20 кадров в секунду с помощью электронного затвора и 6 кадров в секунду — с помощью механического.

Снижение дрожания/смазывания
Движение передней шторки механических затворов или удар зеркала вызывают незначительные вибрации, которые в фотокамерах с высоким разрешением могут приводить к дрожанию фотокамеры или смазыванию изображения. При фотосъёмке со штатива с использованием электронного затвора дрожание фотокамеры и смазывание изображения уменьшаются, поскольку физические объекты внутри фотокамеры не перемещаются.

Механический затвор
Уменьшение искажения строчного затвора

При съёмке с короткой выдержкой проносящихся мимо объектов или при быстром панорамировании КМОП-матрица может создавать искажение строчного затвора. Если используется электронный затвор, КМОП-матрица включена и последовательно сканирует линию за линией, а при съёмке быстро движущихся объектов искажение отображается на снимке, например, виден след движения игрока в гольф, опускающего клюшку. Если при съёмке с короткой выдержкой используется механический затвор, передняя и задняя шторки затвора располагаются настолько близко друг к другу, что в отдельно взятый момент времени экспонируется только фрагмент (полоса) матрицы. Это помогает уменьшить искажение строчного затвора.

Повышение скорости синхронизации вспышки
Синхронизация вспышки при использовании механических затворов часто выполняется быстрее, чем в случае с электронными. Так происходит из-за особенностей электронного затвора и частоты сканирования матрицы. Во время съёмки на улице при ярком освещении и использовании самой высокой скорости синхронизации вспышки лучше всего работать с механическим затвором. Например, максимальная выдержка синхронизации вспышки при использовании механического затвора Nikon 1 V3 — 1/250 с, а при использовании электронного затвора — 1/60 с.

Понравилась ли вам статья? Задавайте вопросы и не забывайте добавлять наш ЖЖ в друзья.

Читайте также:
Монохромная фотография
Важнейшие элементы
Двойная игра
Я | ПОЗНАЮ ОСНОВЫ
5 советов о том, как улучшить композицию снимка

nikonofficial.livejournal.com

Как работает электронный затвор цифровой фотокамеры. Смотреть что такое «Фотографический затвор» в других словарях

Затвор фотокамеры служит для дозирования света на фотоматериал. Скоростью работы затвора задается такой параметр, как . Затворы имеют различные вариации исполнения и типы, мы же рассмотрим шторно-щелевые фокальные затворы.

Шторно-щелевые фокальные затворы

Фокальный затвор находится очень близко к поверхности пленки (фокальной плоскости), от того и название. Шторно-щелевой потому, что обычно затвор состоит из двух шторок, которые во время движения создают между собой щель, через которую происходит засветка кадра. Существует два распространенных типа фокальных затворов малоформатной фототехники:

  • Фокальный затвор горизонтального хода

«Горизонтальный ход» означает, что затвор работает по длинной стороне (шторки ходят вдоль) кадра. Самые распространенные «шторные» фокальные затворы горизонтального хода использовались в малоформатных фотоаппаратах практически повсеместно , и до начала двухтысячных годов (дольше всего использовалось в ).

Главный недостаток затвора с горизонтальным ходом в его скоростной синхронизации для съемки с электронной вспышкой, для которой часто является предел в 1/60 — 1/90 секунды, а также невозможность стабильной работы на высоких скоростях (от 1/1000 сек.).

Думаю, именно поэтому большая часть шторных затворов, которыми оснащались советские зеркальные фотоаппараты, не имели скорости выше 1/500 сек.

Шторный затвор фотоаппарата Зенит-ЕТ

Чтобы использовать электронную вспышку, затвор выставляется на так называемую «выдержку синхронизации» (на диске управления скоростью затвора обозначается как X, или может иметь приписку в виде скорости синхронизации, например X/60), которая обеспечивает минимальное время задержки при экспонировании, и одновременно позволяет вспышке засветить кадр именно в тот момент, когда затвор полностью открыт.

При любом другом раскладе будет неравномерный засвет кадра.

  • Фокальный затвор вертикального хода

В фокальном затворе вертикального хода шторки ходят по короткой стороне (поперек) кадра. Эти затворы сложнее в конструкции, но рабочие характеристики их более стабильны, в том числе и на больших скоростях. Современные затворы в цифровых зеркальных камерах — ламельные, вертикального хода, с электронным управлением.

Причем, скорость срабатывания и начальный импульс задает электродвигатель, а выдержка уже управляется электромагнитами. Отсюда вытекает увеличенное энергопотребление системы на длинных выдержках.


Ламельный затвор Canon 40D, двигатель затвора, зеркала.

Для синхронизации вспышки на высоких скоростях используется так называемая, предвспышка, или стробоскопическая вспышка. Она генерирует несколько импульсов за один проход шторок затвора, решая тем самым, проблему синхронизации. Обычно даже самые недорогие современные электронные вспышки поддерживают эти режимы.

Материал изготовления и надежность

Шторные затворы

Материалом изготовления шторных затворов в подавляющем своем большинстве была прорезиненная ткань. Не смотря на свою простоту и дешевизну, шторные матерчатые затворы имеют очень неприятные особенности:

  • Выгорают на солнце

Если забыть закрыть объектив фотоаппарата крышкой, то объектив будет действовать, как увеличительная линза, и вконце-концов, свойства резины меняются до такой степени, что она осыпается, «прогорает».

  • Элементы шторного затвора подвержены истиранию

Зачастую встречаются камеры того или иного производителя, матерчатые тяги затвора у которых попросту порваны вследствие износа.

  • Элементы шторного затвора отклеиваются от натяжителей

Со временем связующая составляющая клеевой основы приходит в негодность, и высыхает. Шторки отклеиваются у основания натяжителей.

  • Пружины натяжителей приходят в негодность

Внутри натяжителей стоят стальные пружины, которые теряют свойства со временем. Проблема устраняется путем подкручивания регулировочных винтов и не такая страшная, как перечисленные выше.

На отпечатке перечисленные неисправности могут отображаться, как недоэкспонирование одной из зон кадра, неравномерное экспонирование по всему полю кадра (шторки притормаживают), изображение кадра фиксировано рывками. Увидев такие отпечатки, стоит обратить внимание на состояние затвора.

Не смотря на то, что шторные затворы имеют опасные болезни, они весьма ремонтопригодны, и чтобы произвести ремонт в «полевых» условиях, достаточно иметь прямые руки и соответствующую литературу. Максимальный срок жизни шторного затвора составляет примерно 5 тысяч срабатываний.

Ламельные затворы

Шторки таких затворов состоят из нескольких металлических ламелей. Причем, в качестве материала для ламелей может применяться не только сталь, но и нержавеющая сталь, углепластик. Ламельные затворы цифровых зеркальных камер управляются электроникой с использованием электродвигателя и электромагнитов.

Электромагниты отвечают за выдержку затвора, удерживая шторки в открытом состоянии до тех пор, пока не получат импульс от управляющей микросхемы на размыкание. На практике это все занимает, естественно, доли секунды.


yamnnov.ru

Зачем цифровому фотоаппарату механический затвор?

Отличный вопрос!

По большому счёту механический затвор в цифровой фотокамере не нужен. Процессор в любой момент времени готов снять показания матрицы с какой угодно выдержкой и превратить их в файл данных. Зачем для этого хлопать перед матрицей шторками в процессе экспозиции? Тем более механический затвор — сложная, дорогая система, громоздкая и имеет ограниченный ресурс. Электронный затвор с успехом может справится с этой функцией.

Логично, но в современной фототехнике высокого класса механический затвор установлен обязательно , он может устанавливаться на беззеркальных камерах, где его шторки всегда открыты и только в момент съёмки они сначала закрываются, а потом снова открываются, чтобы экспонировать кадр. Даже компакткамеры могут нести аналог механического затвора, там он может быть реализован на основе диафрагмы, лепестки которой полностью закрываются, а после открываются на необходимую величину.

Причины таких конструкторских сложностей кроются в свойствах современных светочувствительных матриц. При постоянном экспонировании матрица «греется», т.е. соседние пиксели разной яркости влияют друг на друга, возникает так называемый цифровой шум, уменьшается разница между самым тёмным и самым ярким пикселями. Для того чтобы избежать подобных явлений устанавливается механический затвор. Таким образом он дает время матрице «остыть», тем самым уменьшает шумность снимка и увеличивает его Динамический Диапазон (ДД). Кроме того матрицы с постоянно закрытым затвором находятся в полной готовности к снимку.

Максимальный эффект достигается на камерах с постоянно закрытым механическим затвором (цифрозеркалки) или облегчает условия функционирования матрицы (беззеркалки, компакткамеры).

Теперь самое интересное. Парадокс состоит в том, что преимущества каждого типа затвора состоит именно в скорости срабатывания. Как это выглядит? Матрица с постоянно закрытым механическим затвором всегда готова к работе, срабатывает без подготовки с отличным результатом. Электронный затвор срабатывает на скорости недоступной механическому — выше 1/200 с, давая возможность камере сделать выдержку в 1/1000 с или 1/2000 с или ещё короче или сделать несколько экспозиций при открытом затворе.

Коротко ответ на вопрос будет звучать так: механический затвор на современных цифровых камерах помогает скрыть недостатки работы матрицы и создать качество изображения, недоступное пока матрицам с электронным затвором.

www.bolshoyvopros.ru

Диафрагма и затвор фотоаппарата — принцип работы

И обычная пленочная камера, и современный цифровой фотоаппарат имеют оптическую систему линз, диафрагму и затвор. Можно сказать, что с точки зрения основной схемы работы фотографического устройства мало что изменилось с появлением цифровой фототехники: в объективе собираются световые лучи и далее направляются через отверстие (диафрагму) на светочувствительный элемент (сенсор). В этой схеме затвор и диафрагма являются невидимыми для глаз фотографа элементами, которые, тем не менее, оказывают огромное влияние на результат съемки. Почему в современной цифровой фототехнике эти элементы, хорошо известные еще по пленочным аппаратам, были сохранены? Для чего они нужны? Как работают диафрагма и затвор в цифровом фотоаппарате?

Предназначение затвора и диафрагмы

Затвор – это один из основных механизмов цифрового фотоаппарата, который отвечает за пропускание световых лучей к светочувствительному элементу (матрице) в течение заданного промежутка времени при нажатии фотографом на кнопку затвора. Основное предназначение затвора состоит в том, чтобы регулировать продолжительность прохождения светового потока через оптическую систему камеры.

Время, на которое открывается затвор фотоаппарата, называется выдержкой или временем экспозиции. Если выдержка составляет меньше секунды, то она указывается как знаменатель дроби, обозначая долю секунды. Например, 1/125 секунды или 1/30 секунды. Затворы, устанавливаемые в цифровых камерах, способны закрываться и открываться с большой скоростью, регулируя, тем самым, время засветки матрицы, то есть выдержку, с высокой точностью.

Чем больше выдержка, тем больше света попадет на светочувствительный элемент камеры. С точки зрения фотографа, затвор камеры должен обладать высокой точностью срабатывания, надежностью в работе в различных условиях съемки и широким диапазоном выдержек. В современных цифровых камерах затвор используется не только для управления выдержкой, но и для защиты матрицы от засветки во время считывания изображения или до начала экспозиции.

Диафрагма представляет собой круглое изменяемое отверстие, которое находится внутри объектива камеры. Фотограф может варьировать диаметр отверстия, тем самым, регулируя поток света, поступающего на матрицу цифрового аппарата. Величина данного отверстия определяется диафрагменным числом: чем больше отверстие диафрагмы (маленькое диафрагменное число), тем больше света падает на матрицу и наоборот.

В цифровых фотоаппаратах диафрагменное число можно изменяться в достаточно широких пределах, например для объектива Tamron AF 18-270mm f/3.5-6.3 Di II VC, с f/3.5 до f/6.3. Кроме того, диафрагма оказывает свое влияние и на глубину резкости изображаемого пространства, позволяя фотографу управлять творческим процессом. Как уже понятно, выдержка с диафрагмой являются взаимозависимыми параметрами. Вместе они составляют так называемую экспопару: при уменьшении одного из этих параметров увеличивается другой.

Фотографический затвор: принцип работы и виды

В тот момент, когда осуществляется фотографирование, затвор фотоаппарата открывается. Световые лучи проходят сквозь объектив, попадают на диафрагму, за счет которой регулируется количество света, и, в конечном счете, доходят до светочувствительного элемента. После того, как прямо на матрицу цифровой фотокамеры попадает свет, начинается экспонирование кадра. Дальше затвор закрывается. Через мгновенье камера уже будет готова снимать следующий кадр. Открываясь и закрываясь, затвор так же, как и диафрагма, обеспечивает изменение количества упавшего на матрицу света.

Естественно, что каким бы ни был совершенным фотографический затвор, он требует хоть и непродолжительного, но все же некоторого периода времени для того, чтобы открыться. Также требуется определенное время и на его закрытие. В этой связи можно выделить три этапа или фазы в работе фотографического затвора.

Первая фаза связана с открыванием действующего отверстия объектива. Следующая – это уже фаза полного открытия действующего отверстия. И, наконец, последняя фаза – это фаза закрывания, то есть определенный промежуток времени от начала уменьшения действующего отверстия до его полного закрытия. Отсюда можно понять, что в течение всего этого цикла работы затвора действующее отверстие объектива остается полностью открытым только некоторую часть времени.

В этой связи одной из самых важных характеристик затвора является оптический коэффициент полезного действия (КПД), который определяет отношение количества света, прошедшего за время работы затвора, к тому количеству света, которое могло бы пройти через «идеальный» затвор за тот же промежуток времени. Чем больше значение коэффициента полезного действия приближается к единице (то есть к 100%), тем совершеннее работает затвор. Другими словами, чем меньше времени в течение заданной выдержки уйдет на открывание и закрывание затвора, тем более продолжительное время отверстие объектива будет полностью открыто, а значит, большее количество света пройдет через объектив. В этой связи можно говорить о том, что хороший фотографический затвор способен полнее раскрыть светосилу объектива.

Все затворы цифровых камер имеют специальные регуляторы, посредством которых можно устанавливать требуемую для данной фотосъемки выдержку. Впрочем, подходящая выдержка может определяться камерой и автоматически. Во многих аппаратах предусмотрен специальный режим полностью ручного управления временем открытия затвора (Bulb), посредством которого затвор может не только открываться, но и закрываться строго по команде фотографа. Такой режим очень актуален при съемке на длительных выдержках, когда камера устанавливается на штативе.

По своей конструкции и принципу действия затворы в цифровых фотоаппаратах подразделяются на следующие виды:

— Электронный затвор

Если в пленочных фотоаппаратах устанавливался механический затвор, который открывал и закрывал шторки, ограничивая воздействие света на пленку, то в цифровых камерах его роль выполняет электронный затвор. Практически все цифровые фотоаппараты оснащены именно таким электронным эквивалентом затвора, который встроен прямо в сенсор камеры.

Он представляет собой своеобразный переключатель, включающий сенсор на прием светового потока в нужный момент и выключающий его по команде процессора. Электроника и процессор камеры полностью управляют работой такого затвора. Особенность электронного затвора состоит в том, что свет на матрицу попадает постоянно, что позволяет, в частности, передавать изображение с матрицы на ЖК-дисплей фотокамеры. При срабатывании электронного затвора изображение с матрицы камеры считывается в течении определенного промежутка времени. Этот промежуток между обнулением матрицы и моментом считывания электронной информации с нее и составляет в данном случае время выдержки.

fotoloff.livejournal.com

Фотографический затвор — это… Что такое Фотографический затвор?

Шторный затвор

Затво́р фотографи́ческий — устройство, используемое для перекрытия светового потока, проецируемого объективом на фотоматериал (например, фотоплёнку) или фотоматрицу (в цифровой фотографии). Путем открытия затвора на определенное время выдержки дозируется количество света, попадающего на чувствительную поверхность и тем самым регулируется экспозиция.

На заре фотографии фотоматериалы имели низкую чувствительность, выдержка измерялась часами, позднее — минутами и секундами, поэтому специальный механизм затвора камерам не требовался — его роль выполняла крышка объектива, а время, на которое она снималась для экспонирования фотопластинки, отсчитывалось фотографом по обычным часам или в уме. В дальнейшем требуемые выдержки сократились до десятых, сотых и тысячных долей секунды, поэтому для управления затвором потребовался достаточно точный автоматический механизм.

Затворы классифицируются по расположению в камере (апертурные: межлинзовые, залинзовые, фронтальные; фокальные) и по конструкции (дисковые; лепестковые; шторные: веерные и ламельные; затворы-жалюзи и др.).

Характеристики фотографического затвора

Фотографический затвор характеризуется:

  • коэффициентом полезного действия (КПД), который выражает отношение количества света, прошедшего за время работы затвора, к количеству света, прошедшего за тот же период через «идеальный затвор»; чем больше значение этого коэффициента приближается к единице (а при процентном выражении — к 100 %), тем совершеннее работает затвор;
  • точностью и диапазоном выдержек;
  • степенью искажения изображения;
  • надёжностью работы затвора в различных условиях фотографирования.

Типы фотографических затворов

Дисковый секторный затвор

Дисковый секторный затвор состоит из вращающегося на оси металлического сектора с отверстием, который приводится в действие пружиной, связанной со спусковым рычагом.

Затворы этого типа отличаются наименьшим числом деталей, что определяет наименьшую стоимость, повышенную надёжность и уменьшение требований к точности изготовления.

Однако их существенные недостатки — громоздкость (радиус диска не менее перекрываемого отверстия) и ограниченный диапазон выдержек привели к ограниченному применению, в основном в камерах начального уровня.

Дисковый затвор имеет конструктивное сходство с обтюратором кинокамер.

Затворы-жалюзи

Затворы-жалюзи применяются крайне редко, так как требуют значительного пространства между линзами объектива, однако представляют практический интерес, обладая некоторыми преимуществами.

Перекрываемое поле состоит из набора узких пластинок-ламелей, одновременно поворачивающихся вокруг осей. При открытом затворе пластинки направлены вдоль оптической оси. Для закрытия затвора достаточно повернуть все пластинки на 90°. Благодаря небольшой массе каждой отдельной пластинки инерционность затвора невелика и приводной механизм отличается простотой. Радиальный затвор-жалюзи, кроме основной задачи дозирования экспозиции, выполняет роль оттенителя — компенсатора падения освещённости от центра кадра к краям; избыточная освещенность в центре гасится центральной частью затвора.

Коэффициент полезного действия затворов-жалюзи близок к КПД центральных затворов.

Центральный затвор

Затвор-диафрагма

Центральный затвор, как правило, устанавливается между линзами объектива или непосредственно за задней линзой. Он представляет собой ряд тонких сегментов, приводимых в действие системой пружин и рычагов. При экспонировании сегменты открывают действующее отверстие объектива симметрично относительно его центра и, следовательно, сразу освещают поверхность светочувствительного элемента.

Затвор-диафрагма, диафрагменный затвор — центральный затвор, максимальная степень раскрытия лепестков которого регулируется, за счёт чего затвор одновременно выполняет роль диафрагмы.

КПД центрального затвора составляет от 0,3 до 0,5, а минимальная выдержка, как правило, не короче 1/500 с (затвор-диафрагма при малых относительных отверстиях может обеспечить и более короткие выдержки, например 1/800 с в советском «ФЭД-Микрон»).

В качестве датчика времени в центральных затворах чаще всего используется простейший часовой анкерный механизм, а на коротких выдержках время открытия затвора регулируется силой натяжения пружин. Последние модели центральных затворов имеют электронный дозатор выдержки. В этих затворах лепестки удерживаются в открытом состоянии электромагнитами.

Преимущества центрального затвора:

  • Не искажают фотографическое изображение эффектами временно́го параллакса, так как весь кадр экспонируется одновременно.
  • Возможность использования фотовспышки на любых выдержках.
  • Устойчиво работают на морозе, в отличие от тканевых шторных затворов (см. ниже).
  • Благодаря открытию от центра к краям эффективное распределение света в световом пучке получается неравномерным по радиусу, и при этом центральная часть пучка открыта в течение большего времени, нежели края. В результате характер боке оказывается более близок к «математически правильному» распределению Гаусса. Особенно это заметно на затворах-диафрагмах.

Недостатки центрального затвора:

  • Относительная сложность устройства (кроме простейших затворов с одной выдержкой).
  • Сложность получения коротких выдержек. Это связано с тем, что тонкие лепестки затвора подвергаются большим нагрузкам (за очень короткое время они должны разогнаться до скорости несколько метров в секунду и более, а затем остановиться без отскоков и деформации). На практике затворы с выдержками короче 1/250 с ставят только в дорогие камеры.
  • Сложность применения в однообъективных зеркальных камерах — для визирования затвор приходится держать открытым, а кадровое окно на это время закрывать от света другим механизмом (Bessamatic, «Зенит-4»).
  • Оптически наивыгоднейшее место для расположения центрального затвора — между линзами объектива. Для использования сменных объективов либо приходится применять залинзовый затвор, либо сильно удорожать объективы, встраивая затвор в каждый из них (Hasselblad 500 C/M[1]).
  • Центральный затвор во время открывания и закрывания дополнительно диафрагмирует объектив, что при короткой выдержке и открытой диафрагме может сказаться на характере изображения.

Фокальный затвор

Фокальный затвор с металлическими ламелями

Фокальный затвор, как явствует из названия, располагается вблизи фокальной плоскости, то есть непосредственно перед светочувствительным материалом. По принципу действия фокальные затворы обычно относятся к шторным (шторно-щелевым). Такой затвор представляет собой пару шторок (из прорезиненной ткани или тонких металлических ламелей). Затвор приводится в действие системой пружин или электродвигателем.

Мгновенный затвор разработал и построил витебский фотограф С. А. Юрковский в 1882[2] году, описание которого опубликовал в журнале «Фотограф» (№ 4 за 1883 год) и демонстрировал на Московском съезде фотографов. Выпуск усовершенствованной конструкции, получившей название шторно-щелевого затвора, с согласия Юрковского был налажен в Англии, а затем, с небольшими изменениями, в Германии.

Во взведенном состоянии фотоматериал перекрыт первой шторкой. При спуске затвора она сдвигается под воздействием пружины, открывая путь световому потоку. По окончании заданного времени экспозиции световой поток перекрывается второй шторкой. На коротких выдержках вторая шторка начинает движение еще до того, как первая полностью откроет кадровое окно. Щель, образующаяся между шторками, пробегает вдоль кадрового окна, последовательно освещая его. Длительность выдержки определяется шириной щели. Перед началом съемки следующего кадра затвор взводится заново, при этом шторки возвращаются в исходное положение таким образом, что щель между ними не образуется.

Затвор может быть с вертикальным или горизонтальным ходом штор. Горизонтальный ход, как правило имеют затворы с прорезиненными шторками, вертикальный — с ламелями. В случае 35-мм фотокамер затвор с вертикальным ходом позволяет при равной линейной скорости движения шторок получить в 1,5 раза более короткую выдержку синхронизации (см. ниже), поскольку проходимый шторами путь в 1,5 раза короче (24 мм вместо 36 мм у затворов с горизонтальным ходом).

КПД шторного затвора доходит до 0,95, а минимальная выдержка достигает 1/12000 с (Minolta 9 и 9xi).


При съёмке быстро движущихся объектов шторный затвор искажает их изображение. Оно, в зависимости от направления движения объекта по отношению к фотоаппарату, несколько суживается по ширине, или верхние части изображения слегка смещаются по отношению к нижним. Такие искажения слабо заметны и не играют роли при обычном фотографировании. Но их надо учитывать при технической или научной съёмке. Это явление называется временной параллакс.

На морозе шторный затвор из прорезиненной ткани может работать недостаточно точно и даже полностью отказывать, так как шторки теряют эластичность.

Шторный затвор требует тщательной регулировки, так как равномерность экспозиции по площади кадра напрямую зависит от равномерности и согласованности хода шторок. Конструкция же шторного затвора может быть относительно простой, как, например, классический затвор О. Барнака, широко применявшийся на камерах Leica и многих других во всём мире, включая отечественные ФЭД, «Зоркий», «Зенит» и «Ленинград».

В старых фотокамерах взвод шторного затвора осуществлялся специальным маховичком или рычагом (курком) вместе с перемоткой пленки. В современных аппаратах оба этих процесса выполняют электродвигатели. В механических версиях затворов этого типа выдержки отрабатываются механически (натяжение пружин и т. п.). В электромеханических, как правило, механически отрабатывается лишь одна (реже две[3]) наикратчайшая выдержка. Весь диапазон остальных выдержек реализуется за счёт придерживания второй шторы электромагнитом. Другими словами, полноценно электромеханический затвор может работать лишь при работоспособных элементах питания, в то время как механический от них независим.

Особенности работы со вспышкой

Как отмечено выше, на коротких выдержках экспонирование фотоматериала происходит не одновременно. В каждый отдельный момент времени свет попадает только на часть кадра, определяемую шириной щели.

Из-за этой особенности работы шторного затвора на коротких выдержках использовать фотовспышку можно только на такой выдержке, при которой вся площадь кадра открыта свету одновременно (то есть ширина щели между шторками равна размеру кадрового окна). Минимальная выдержка, при которой это условие выполняется, называется выдержкой синхронизации. Применение вспышки на более коротких выдержках приведет к тому, что ею будет освещена только часть кадра в виде светлой полосы.

На современных цифровых зеркальных фотоаппаратах среднего класса выдержка синхронизации составляет от 1/160 до 1/500 (при использовании электронно-механического затвора). Для сравнения — на многих фотоаппаратах с механическим затвором и тканевыми шторками выдержка синхронизации составляла около 1/30 с, реже 1/60 с; более короткие встречались только на самых дорогих моделях. Короткие выдержки синхронизации позволяют использовать вспышку, например, в солнечный день для подсветки теней.

Для обхода этого ограничения шторного затвора в дополнение к нему может применяться электронный затвор. Другим способом является применение высокоскоростной синхронизации вспышки (FP/HSS). При этом вспышка вместо одного короткого, но яркого импульса испускает импульс с такой же энергией, но более продолжительный (а значит менее яркий, так как энергия импульса остаётся той же), что позволяет получить равномерно освещенный кадр даже на очень коротких выдержках (вплоть до 1/4000 — 1/8000), однако освещенность, которую создает вспышка, пропорционально уменьшается.

Синхронизация по первой/второй шторке

С конструкцией шторного затвора связаны термины, описывающие специальные режимы синхронизации фотовспышки — по первой шторке, по второй шторке (сейчас эти термины применяются вне зависимости от конкретного типа затвора). Время работы электронной вспышки обычно значительно меньше, чем время открытия затвора (1-5 мс против сотых долей секунды), в связи с чем тот момент, в который сработает вспышка, оказывает заметное влияние на полученный результат, особенно при съёмке движущихся объектов. При синхронизации по первой шторке вспышка срабатывает сразу после открытия затвора (когда первая шторка займёт конечное положение). Вспышка дает яркую экспозицию движущегося объекта от вспышки.

Однако, остальное освещение сцены может оказаться достаточным для формирования изображения при заданной выдержке. При этом движущийся объект образует слабый смазанный след, направленный в сторону движения объекта, экспонированный за время прошедшее после светового импульса до закрытия затвора. Объект на фотографии зрительно получается двигающимся в обратную сторону.

При синхронизации по второй шторке вспышка срабатывает перед закрытием затвора (незадолго перед началом движения второй шторки), поэтому вначале слабо экспонируется движение без вспышки, и лишь потом объект полностью освещается, что соответствует зрительному восприятию движения объекта, оставляющего позади себя след.

Электронный затвор

Электронные затворы применяются в современной цифровой фототехнике, и представляют собой не отдельное устройство, а принцип дозирования экспозиции цифровой матрицей. Выдержка определяется временем между обнулением матрицы и моментом считывания информации с неё.

Применение электронного затвора позволяет достичь более коротких выдержек (в том числе и выдержки синхронизации со вспышкой) без использования более дорогостоящих высокоскоростных механических затворов.

Из недостатков электронного затвора можно выделить искажение изображения, вызванное последовательным чтением ячеек, а также повышенной вероятностью возникновения блюминга (например, при попадании в кадр солнца).

Кроме того, выпускаются матрицы, имеющие индивидуальный электронный затвор в каждом пикселе. В этом варианте осуществляется настройка оптимального времени экспозиции для каждого пикселя в зависимости от уровня освещённости в данном участке кадра.[4].

Примечание: термин Электронный затвор часто используется вместо термина Электронно управляемый механический затвор.

Применение затворов в современных фотоаппаратах

В большинстве современных фотоаппаратов используется электронное управление затвором и высокоскоростные электроприводы, т. е. фотографу не требуется выполнять каких-либо операций по взведению затвора. В механических плёночных камерах взведение затвора обычно объединено с перемоткой плёнки на следующий кадр, однако в некоторых старых и дешёвых моделях (например, в «Смене») для этого использовался отдельный рычажок. В совсем простых камерах применялись затворы, не требовавшие предварительного взвода: сжатие приводной пружины происходило при нажатии на спусковую кнопку («Юнкор»). Спуск (открытие) затвора происходит по команде фотографа при нажатии на «главную» (а во многих любительских камерах и единственную) кнопку или с помощью автоспуска или программного механизма.

В современных автоматических камерах кнопка спуска не имеет механической связи с затвором и инициирует ряд различных автоматических процессов, включая измерение освещённости, наведение на резкость и т. п. В дешёвых камерах их выполнение может потребовать заметного времени, в связи с чем возникает т. н. «затворный лаг» — реальное открытие затвора происходит с задержкой, что не позволяет успешно снимать динамичные сцены. Затворный лаг особенно характерен для потребительских цифровых камер.

В компактных цифровых камерах затвор отсутствует, изображение проецируется на матрицу непрерывно, а статическое изображение требуемой яркости получается в результате микропроцессорной обработки. В специальных фотоаппаратах используются особые конструкции затворов, в том числе для высокоскоростной съёмки. В кинокамерах затвор является частью обтюраторного механизма.

Во многих камерах предусматривается режим полностью ручного управления временем открытия затвора — т. н. выдержка «от руки» или Bulb. В этом режиме затвор не только открывается, но и закрывается по команде фотографа (после отпускания кнопки спуска или по повторному нажатию на неё). Как правило, это необходимо для обеспечения длительных выдержек (порядка секунд, минут, часов), камера при этом устанавливается на штативе, чтобы избежать «шевелёнки».

См. также

Примечания

Литература

  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съемка, формулы, термины, рецепты. Изд. 4-е, сокр. — М.: Искусство, 1977.
  • Тамицкий Э. Д., Горбатов В. А. Учебная книга по фотографии. — М.: Лёгкая индустрия, 1976
  • Кулагин, С. В. Фотографический затвор // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М.: Советская энциклопедия, 1981.
  • Затвор-диафрагма // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М.: Советская энциклопедия, 1981.
  • Щепанский, Г. В. Затвор с электронным управлением // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М.: Советская энциклопедия, 1981.
  • Яковлев М. Ф. Учись фотографировать. — М.: Искусство, 1977.
  • Яковлев М. Ф. Ремонт фотоаппаратов. Изд. 2-е. — М.: Искусство, 1965.

Ссылки

dic.academic.ru

Функция электронной передней шторки затвора может портить боке

При съемке с очень короткой выдержкой на максимально открытой диафрагме красивого размытия заднего плана может не получиться.

Если у вашей камеры есть функция электронной передней шторки затвора (EFCS), и она включена, то вам нужно знать: при съемке с очень короткой выдержкой эта функция делает боке заметно хуже. В этом видео фотограф Мэнни Ортиц показывает разницу:

Хотя Ортиц и называет функцию просто “электронным затвором”, речь идет именно о передней шторке — полностью электронный затвор не должен оказывать такой эффект на боке.

“Затвор состоит из двух шторок: передней, которая открывается с началом экспозиции, и задней, которая закрывается, чтобы завершить экспозицию. При использовании функции электронной передней шторки затвора экспозиция начинается электронно, после открытия передней шторки; экспозиция заканчивается после закрытия задней. Открытие механического затвора до начала экспозиции позволяет избавиться от вибраций, вызванных затвором, тем самым снижая размытие”, — пишет сайт Nikon.

Если вы посмотрите руководство пользователя к своей камере, то, возможно, увидите и соответствующее предупреждение о EFCS. Например, вот что говорится в руководствах к Sony a7R III и a9:

“При съемке с короткими выдержками и использовании светосильного объектива, размытый круг, создаваемый эффектом боке, может оказаться срезан из-за механизма затвора. Если это происходит, отключите функцию электронной передней шторки”.

Причина такого “срезанного” боке — в том, что при использовании EFCS сигнал поступает сразу на матрицу. Задняя же шторка механического затвора проходит в пяти миллиметрах от матрицы. Эта разница в расстоянии создает интересный эффект с лучами света, которые падают на датчик под большим углом (то есть как раз при использовании светосильных объективов с открытой диафрагмой).

При использовании быстрых выдержек размытый источник света, который в обычных условиях дал бы световой диск на изображении, частично “отсекается” закрывающейся задней шторкой затвора — отсюда и “срезанное” боке.

Чтобы показать разницу, Ортиц снял два фото с диафрагмой f/1.4 и выдержкой менее 1/1000 с — одно с выключенной функцией EFCS, другое — со включенной.

Функция электронной передней шторки затвора выключенаФункция электронной передней шторки затвора включена

Как видим, при включенной EFCS размытие на f/1.4 куда меньше.

Функция электронной передней шторки затвора присутствует во многих современных зеркалках и беззеркалках, поэтому при съемке стоит помнить об этой особенности.

fototips.ru

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *