Что такое свет: Свет | это… Что такое Свет?

ТЕМА ПОНЯТИЕ «СВЕТ»

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Скоробогатова А.К. 1


1МБОУ «СОШ № 28», города Воронежа

Усеинова А.А. 1


1МБОУ СОШ № 28

Автор работы награжден дипломом победителя III степени

Диплом школьникаСвидетельство руководителя

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

  1. мощность излучения

  2. Сила света

  3. отражение света

  4. преломление света

  5. Распространение света

  • Световая волна

1. График

2.Длина волн

3.Частота и период.

  • Свет — это электромагнитное излучение, видимое человеческому глазу. Оно состоит из волн разной длины, воспринимаемых как разные цвета. Очень длинные волны воспринимаются как красный, а очень короткие как фиолетовый. Между ними находятся оранжевый, жёлтый, зелёный, синий и индиго. Ниже красного находятся инфракрасные, микро- и радиоволны; выше фиолетового находятся ультрафиолет, рентгеновское и гамма-излучение Свет – гармоническое колебание. Раздел физики, в котором изучается свет, носит название оптика.

Но более простыми словами.

  1. Лучистая энергия, воспринимаемая глазом, делающая окружающий мир видимым.

  2. Тот или иной источник освещения.

Примечание:

Электромагнитное излучение — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

Природа света

  • В V веке до н. э., Эмпедокл предположил, что всё в мире состоит из четырёх элементов: огня, воздуха, земли и воды. Он считал, что из этих четырёх элементов, богиня Афродита создала человеческий глаз, и зажгла в нём огонь, свечение которого и делало зрение возможным. Для объяснения факта, что тёмной ночью человек видит не так хорошо, как днём, Эмпедокл постулировал взаимодействие между лучами, идущими из глаз и лучами от светящихся источников, таких, как солнце.

  • Примерно в 300 году до н. э. Евклидом был написан труд «Оптика», дошедший до наших дней, в котором он исследовал свойства света. Евклид утверждал, что свет распространяется по прямой линии, он изучал законы отражения света и описал их математически. Он выразил сомнение в том, что зрение является следствием исхождения луча из глаза, задаваясь вопросом: как человек, открыв в ночное время глаза, устремлённые в небо, может моментально увидеть звёзды.

    Проблема решалась только, если скорость луча света, исходящего из человеческого глаза, была бесконечно большой.

  • Пи­фа­гор был одним из пер­вых уче­ных, кто дал на­уч­ную ги­по­те­зу от­но­си­тель­но при­ро­ды света. Он пер­вый не толь­ко до­га­дал­ся, но и до­ка­зал, что свет рас­про­стра­ня­ет­ся пря­мо­ли­ней­но. В XVII веке сто­рон­ни­ком этой тео­рии стал Исаак Нью­тон. Он объ­яс­нял много све­то­вых яв­ле­ний, ос­но­вы­ва­ясь на том, что свет – это поток спе­ци­аль­ных ча­стиц. Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую.

  • В это же время по­яви­лась дру­гая тео­рия – вол­но­вая тео­рия света. Сто­рон­ни­ком этой тео­рии был Хри­сти­ан Гюй­генс. Он пы­тал­ся объ­яс­нить те же яв­ле­ния, что и Нью­тон, толь­ко с той по­зи­ции, что свет – это волна. Рассматривала свет как волновой процесс, подобный механическим волнам. Каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн дает положение волнового фронта

    в следующий момент времени. Под волновым фронтом Гюйгенс понимал геометрическое место точек, до которых одновременно доходит волновое возмущение. С помощью принципа Гюйгенса были объяснены законы отражения и преломления.

  • И хотя все указывало на то, что свет – это волна, В XIX веке Ген­рих Герц изу­чал свой­ства элек­тро­маг­нит­ных волн и по­ка­зал, что свет может быть ча­сти­цей. Герц от­крыл яв­ле­ние фо­то­эф­фек­та.

Свет ведет себя при рас­про­стра­не­нии как волна (вол­но­вые свой­ства), а при из­лу­че­нии и по­гло­ще­нии – как ча­сти­ца (со всеми свой­ства­ми ча­стиц). То есть свет имеет двой­ную при­ро­ду.

По­это­му все яв­ле­ния рас­смат­ри­ва­ют­ся с по­зи­ций этих двух тео­рий.

Примечание :

Фотоэффект — под дей­стви­ем света из ме­тал­ли­че­ской пла­сти­ны, за­ря­жен­ной от­ри­ца­тель­но, вы­би­ва­ют­ся элек­тро­ны.

Свойства света

  1. Мощность излучения.

Световой поток — физическая величина, характеризующая количество «световой» мощности в соответствующем потоке излучения, оцененную с позиции его воздействия на зрительный аппарат человека.

Обычная лампа накаливания мощностью 100 Вт создаёт световой поток, равный примерно 1300 лм

Сила света.

Это одна из основных световых величин, характеризующая источник видимого излучения.

Она равна отношению светового потока распространяющегося от источника внутри элементарного телесного угла, который содержит данное направление, к этому телесному углу.

Единица измерения в Международной системе единиц (СИ): кандела (кд)

Отражение.

Отраже́ние — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

От то­чеч­но­го ис­точ­ни­ка света на гра­ни­цу раз­де­ла па­да­ет све­то­вой луч. Часть этого луча прой­дет внутрь сле­ду­ю­щей про­зрач­ной среды, а часть от­ра­зит­ся. В дан­ном слу­чае от­ра­же­ни­ем мы можем на­звать такое яв­ле­ние, при ко­то­ром часть па­да­ю­ще­го све­то­во­го луча от­ра­жа­ет­ся, т.

е. воз­вра­ща­ет­ся в ту же среду, из ко­то­рой свет упал на гра­ни­цу раз­де­ла.

Рас­смат­ри­вая яв­ле­ния от­ра­же­ния, мы долж­ны ска­зать о за­ко­нах от­ра­же­ния света.

За­ко­ны от­ра­же­ния.

Луч па­да­ю­щий, луч от­ра­жен­ный и пер­пен­ди­ку­ляр, вос­став­лен­ный в точку па­де­ния луча, лежат в одной плос­ко­сти.

Угол па­де­ния луча равен углу от­ра­же­ния луча.

Диф­фуз­ное от­ра­же­ние – это от­ра­же­ние от до­ста­точ­но ше­ро­хо­ва­тых по­верх­но­стей. Ярким при­ме­ром диф­фуз­но­го от­ра­же­ния можно на­звать от­ра­же­ние от белой бу­ма­ги

Зер­каль­ное от­ра­же­ние – это от­ра­же­ние, когда все лучи, упав­шие на дан­ную по­верх­ность па­рал­лель­но друг другу, также от­ра­зи­лись.

Преломление света.

Преломление света – это явление изменения направления движения светового луча при переходе из одной среды в другую. Различные среды, пропускающие свет, имеют различную оптическую плотность. Скорость света в них различна.

Угол, который образует падающий луч к проведенному к границе двух сред перпендикуляру после попадания во вторую среду, называется углом преломления. Опытным путем установлено, что если свет падает из среды оптически менее плотной в более плотную, то угол падения будет больше угла преломления. Скорость распространения света

Если же наоборот – оптическая плотность первой среды больше оптической плотности вещества второй среды, то угол падения будет меньше угла преломления. При изменении угла падения угол преломления будет также меняться. Однако отношение этих углов не остается постоянным. А вот отношение синусов этих углов – это постоянная величина.

где α – угол падения, γ – угол преломления, n – постоянная величина для двух конкретных сред, не зависящая от угла падения.

Закон преломления света звучит следующим образом: падающий и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления – величина постоянная для двух сред.

Законы отражения и преломления света обусловливают многие явления в нашей жизни. Именно благодаря им мы видим мир таким, каков он есть.

Скорость распространения света меньше в оптически более плотной средой.

Примечание

Опти́ческая пло́тность — мера ослабления света прозрачными объектами (такими, как кристаллы, стекла, фотоплёнка) или отражения света непрозрачными объектами (такими, как фотография, металлы и т. д.)

5.Распространение света.

Распространение света. На границе двух сред свет преломляется. В однородной среде свет распространяется прямолинейно.

Если между глазом и каким-нибудь источником света поместить непрозрачный предмет, то источник света мы не увидим. Объясняется это тем, что в однородной среде свет распространяется по прямым линиям.

Прямолинейное распространение света — факт, установленный ещё в глубокой древности. Об этом писал основатель геометрии Евклид (300 лет до нашей эры).Прямолинейностью распространения света в однородной среде объясняется образование тени. Тени людей, деревьев, зданий и других предметов хорошо наблюдаются на земле в солнечный день.

О положении окружающих нас предметов в пространстве мы судим, подразумевая, что свет от объекта попадает в наш глаз по прямолинейным траекториям. Наша ориентация во внешнем мире целиком основана на предположении о прямолинейном распространении света. Именно это допущение привело к представлению о световых лучах.

Световая волна.

Электромагнитная волна видимого диапазона длин волн . Частота световой волны определяет ”цвет”.

График световой волны

График световой волны, это график электромагнитной волны.

В электромагнитной волне векторы Е и Н перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны. Во всех процессах взаимодействия света с веществом основную роль играет электрический вектор Е, поэтому его называют световым вектором. Плоскость, в которой колеблется световой вектор Е называется плоскостью колебаний, а плоскость, в которой совершает колебание магнитный вектор Н– плоскостью поляризации.

V-направление распространения волны.

Фронт волны, это — точки среды, в которых векторы или имеют одинаковую фазу.

Длина волн

Расстояние между частицами, колеблющимися с одинаковой фазой, м.

Частота волн

это число полных колебаний или циклов волны, совершенных в единицу времени.

Период колебания волны

наименьший промежуток времени, за который волна совершает одно полное колебание (то есть возвращается в то же состояние, в котором он находился в первоначальный момент, выбранный произвольно)., секунды

Формулы:

Длина: скорость умноженная на период или скорость деленная на частоту. метр

Период: единица времени деленная на частоту или длина волны деленная на скорость. секунды

Частота: скорость деленная на длину волны. Герц

Скорость света.

Скорость света в вакууме — абсолютная постоянная величина скорости распространения электромагнитных волн в вакууме. В физике традиционно обозначается латинской буквой «c»(произносится как «цэ»).

Чтобы определить скорость света в любой среде, нужно скорость света в вакууме разделить на показатель преломления.

Спектральный состав.

Световые излучения, воздействующие на глаз и вызывающие ощущение цвета, подразделяют на простые (монохроматические) и сложные. Излучение с определенной длиной волны называют монохроматическим. Простые излучения не могут быть разложены ни на какие другие цвета.

Спектр — последовательность монохроматических излучений, каждому из которых соответствует определенная длина волны электромагнитного колебания.

Цвет возникает в результате взаимодействия белого света с материей.

Оптическая область спектра электромагнитные излучений состоит из трех участков: невидимых ультрафиолетовых излучений (длина волн 10—400 нанометров), видимых световых излучений (длина волн 400—750 нанометорв), воспринимаемых глазом как свет и невидимых инфракрасных излучений (длина волн 740 нанометров — 1—2 мм).

Нанометр – 1*10-9(степень)

Источники света.

Тела, от которых свет исходит, называются источниками света. Различают естественные и искусственные источники света. Самый известный абсолютно всем жителям нашей планеты естественный источник света – это Солнце.

Искусственные источникисвета — технические устройства различной конструкции и с различными способами преобразования энергии, основным назначением которых является получение светового излучения (как видимого, так и с различной длиной волны, например, инфракрасного).

Список использованной литературы.

1.ru.wikipedia.org

2.http://fizportal.ru/light

3.http://interneturok.ru

4.http://www. nado5.ru

5.http://zreni.ru/

6.учебник по физики 8 класс А.В. Перышкин

Просмотров работы: 6396

Что такое свет и какие его основные характеристики? ⋆ FutureNow

Твитнуть

Узнайте, что такое свет, какой свет считается видимым и какие основные характеристики света, с помощью которого мы воспринимаем мир.

Свет, или видимый свет, обычно относится к электромагнитному излучению, которое может быть обнаружено человеческим глазом. 

Что такое свет?

Весь электромагнитный спектр чрезвычайно широк, начиная от низкоэнергетических радиоволн с длинами волн, которые измеряются в метрах, и заканчивая высокоэнергетическими гамма-лучами с длинами волн 1 x 10-11 метров. Электромагнитное излучение, как следует из названия, описывает колебания электрического и магнитного полей, которые передают энергию со скоростью света (это ~ 300 000 км / сек через вакуум).     

Свет можно описать как поток фотонов, безмассових пакетов энергии, каждый из которых движется со волнообразными свойствами со скоростью света. 

Что такое свет? – электромагнитный спектр (Photo: colormatters.com)

Что такое фотон?

Фотон – это наименьшее количество (квант) энергии, которую можно транспортировать. Осознание того, что свет движется в дискретных квантах, стало началом квантовой теории.

Интересные факты о бактериях: полезные или вредные?

Что такое видимый свет?

Видимый свет по существу не отличается от других частей электромагнитного спектра, за исключением того, что человеческий глаз может распознавать видимые волны. Это на самом деле соответствует лишь очень узкому окну электромагнитного спектра, начиная от 400 нм для фиолетового света и заканчивая 700 нм для красного света.  

Что такое ультракрасное и инфракрасное излучение?

Излучения ниже 400 нм называется ультрафиолетовым (УФ), а излучение больше 700 нм-инфракрасным (ИК), и ни одно из них не может быть обнаружено человеческим глазом.  

Однако передовые научные детекторы могут быть использованы для обнаружения и измерения фотонов в гораздо более широком диапазоне электромагнитного спектра, а также и значительно меньшего количества фотонов (то есть гораздо более слабых уровней света), чем глаз может обнаружить.

Что измеряется световыми годами?

Как свет взаимодействует с веществом?

Люди не случайно могут «видеть» свет. Свет является нашим основным средством восприятия окружающего мира. Действительно, в научном контексте выявление света является очень мощным инструментом для исследования Вселенной вокруг нас. Поскольку свет взаимодействует с веществом а изучая свет, который возник или взаимодействовал с веществом, можно определить многие свойства этого вещества.    

Например, благодаря изучению света мы можем понять состав звезд и галактик, находящихся на расстоянии многих световых лет, или наблюдать в реальном времени за микроскопическими физиологическими процессами, происходящими в живых клетках.   

Диффузия вокруг нас: примеры

Материя состоит из атомов, ионов или молекул, и именно благодаря их взаимодействия со светом возникают различные явления, которые могут помочь нам понять природу материи. Атомы, ионы или молекулы имеют определенные уровни энергии, обычно связанные с уровнями энергии, которую могут содержать электроны в веществе. Свет иногда генерируется веществом, или чаще фотон света может взаимодействовать с уровнями энергии различными способами.  

Что такое свет – Пример диаграммы Яблонского, иллюстрирующей переходы между различными энергетическими состояниями молекул после взаимодействия с фотоном. (Photo: andor.oxinst.com/)

Мы можем представить энергетические уровни вещества по схеме, известной как диаграмма Яблонского, которая представлена ​​на рисунке выше. Атом или молекула в низком из возможных энергетических состояний, котороое известено как основное состояние, может поглотить фотон, который позволит атому или молекуле поднятся до состояния высшего уровня энергии, известного как возбужденное состояние.  

Итак, вещество может поглощать свет характерной длины волны. Атом или молекула, как правило, остаются в возбужденном состоянии лишь очень короткое время, и они расслабляются назад к основному состоянию с помощью ряда механизмов. 

В приведенном примере возбужденный атом или молекула сначала теряет энергию не излучая фотон, а затем расслабляется к промежуточному состоянию с более низкой энергией с помощью внутренних процессов, которые обычно нагревают вещество. Промежуточный уровень энергии затем ослабляется до основного состояния за счет излучения фотона с меньшей энергией (большей длиной волны), чем фотон, который сначала поглощался. 

Из чего состоит воздух

Как мы изучаем материю с помощью света?

Мы узнали, что такое свет, но как с его помощью можно изучить материю? Поскольку фотоны, которые либо поглощаются или излучаются веществом, иметь характерную энергию, когда свет взаимодействует с веществом, впоследствии расщепляются на составляющие длины волн.  С помощью спектрографа, полученная спектральная подпись покажет нам огромное количество информации о самом веществе.  

Широкое поле спектроскопии представляет собой множество методов, таких как спектроскопия комбинационного рассеяния, поглощения / передачи / отображения спектроскопии, атомной спектроскопии, лазерной искровой спектроскопии (LIBS) и транзиторной абсорбционной спектроскопии. Все это предоставляет нам массу полезной информации о научных свойства атомов и молекул, а также дает способность очень конкретно идентифицировать присутствие и оценить количество таких материалов в образце.              

Источник: https://andor.oxinst.com 

Свет | Определение, свойства, физика, характеристики, типы и факты

видимый спектр света

Смотреть все СМИ

Ключевые люди:
Исаак Ньютон Альберт Эйнштейн Джеймс Клерк Максвелл Птолемей Роджер Бэкон
Похожие темы:
цвет Солнечный лучик фотон интенсивность света скорость света

Просмотреть весь связанный контент →

Популярные вопросы

Что такое свет в физике?

Свет — это электромагнитное излучение, воспринимаемое человеческим глазом. Электромагнитное излучение возникает в чрезвычайно широком диапазоне длин волн, от гамма-лучей с длиной волны менее примерно 1 × 10 −11 метров до радиоволн, измеряемых в метрах.

Какова скорость света?

Скорость света в вакууме является фундаментальной физической константой, и в настоящее время принято значение 29.9 792 458 метров в секунду, или около 186 282 миль в секунду.

Что такое радуга?

Радуга образуется при преломлении солнечного света сферическими каплями воды в атмосфере; два преломления и одно отражение в сочетании с хроматической дисперсией воды создают первичные цветовые дуги.

Почему свет важен для жизни на Земле?

Свет является основным инструментом восприятия мира и взаимодействия с ним для многих организмов. Солнечный свет согревает Землю, определяет глобальные погодные условия и запускает поддерживающий жизнь процесс фотосинтеза; около 10 22 джоулей солнечной лучистой энергии достигает Земли каждый день. Взаимодействие света с материей также помогло сформировать структуру Вселенной.

Каково отношение цвета к свету?

В физике цвет ассоциируется именно с электромагнитным излучением определенного диапазона длин волн, видимым человеческому глазу. Излучение таких длин волн составляет часть электромагнитного спектра, известную как видимый спектр, т. е. свет.

свет , электромагнитное излучение, воспринимаемое человеческим глазом. Электромагнитное излучение возникает в чрезвычайно широком диапазоне длин волн, от гамма-лучей с длиной волны менее примерно 1 × 10 −11 метров до радиоволн, измеряемых в метрах. В этом широком спектре длины волн, видимые человеку, занимают очень узкую полосу, от примерно 700 нанометров (нм; миллиардных долей метра) для красного света до примерно 400 нм для фиолетового света. Области спектра, примыкающие к видимому диапазону, часто также называют световыми, инфракрасными с одной стороны и ультрафиолетовыми с другой. Скорость света в вакууме — фундаментальная физическая константа, принятое в настоящее время значение которой равно ровно 299 792 458 метров в секунду, или около 186 282 миль в секунду.

Нет однозначного ответа на вопрос «Что такое свет?» удовлетворяет множеству контекстов, в которых свет воспринимается, исследуется и используется. Физик интересуется физическими свойствами света, художник — эстетической оценкой визуального мира. Благодаря зрению свет является основным инструментом восприятия мира и общения в нем. Солнечный свет согревает Землю, определяет глобальные погодные условия и запускает поддерживающий жизнь процесс фотосинтеза. В самом большом масштабе взаимодействие света с материей помогло сформировать структуру Вселенной. Действительно, свет дает окно во Вселенную, от космологических до атомных масштабов. Почти вся информация об остальной Вселенной достигает Земли в виде электромагнитного излучения. Интерпретируя это излучение, астрономы могут заглянуть в самые ранние эпохи Вселенной, измерить общее расширение Вселенной и определить химический состав звезд и межзвездной среды. Подобно тому, как изобретение телескопа значительно расширило возможности исследования Вселенной, так и изобретение микроскопа открыло сложный мир клетки. Анализ частот света, испускаемого и поглощаемого атомами, явился основным толчком к развитию квантовой механики. Атомная и молекулярная спектроскопия по-прежнему остается основным инструментом для исследования структуры вещества, обеспечивая сверхчувствительные тесты атомных и молекулярных моделей и способствуя изучению фундаментальных фотохимических реакций.

Свет передает пространственную и временную информацию. Это свойство лежит в основе областей оптики и оптических коммуникаций, а также множества связанных с ними технологий, как зрелых, так и развивающихся. Технологические приложения, основанные на манипулировании светом, включают лазеры, голографию и волоконно-оптические телекоммуникационные системы.

В большинстве повседневных обстоятельств свойства света можно вывести из теории классического электромагнетизма, в которой свет описывается как связанные электрические и магнитные поля, распространяющиеся в пространстве в виде бегущей волны. Однако эта волновая теория, разработанная в середине 19 в.го века недостаточно для объяснения свойств света при очень низкой интенсивности. На этом уровне квантовая теория необходима для объяснения характеристик света и взаимодействия света с атомами и молекулами. В своей простейшей форме квантовая теория описывает свет как состоящий из дискретных пакетов энергии, называемых фотонами. Однако ни классическая волновая модель, ни классическая модель частиц не описывают свет правильно; свет имеет двойственную природу, которая раскрывается только в квантовой механике. Этот удивительный корпускулярно-волновой дуализм характерен для всех первичных составляющих природы (например, электроны имеют как корпускулярный, так и волновой аспекты). С середины 20-го века физики считали законченной более полную теорию света, известную как квантовая электродинамика (КЭД). КЭД объединяет идеи классического электромагнетизма, квантовой механики и специальной теории относительности.

Britannica Quiz

27 правильных или неверных вопросов из самых сложных научных викторин Britannica

В этой статье основное внимание уделяется физическим характеристикам света и теоретическим моделям, описывающим природу света. Его основные темы включают введение в основы геометрической оптики, классические электромагнитные волны и эффекты интерференции, связанные с этими волнами, а также основные идеи квантовой теории света. Более подробные и технические презентации этих тем можно найти в статьях «Оптика, электромагнитное излучение, квантовая механика и квантовая электродинамика». См. также относительность для получения подробной информации о том, как рассмотрение скорости света, измеренной в различных системах отсчета, сыграло решающую роль в развитии специальной теории относительности Альберта Эйнштейна в 1905 году. world

Хотя есть явные свидетельства того, что ряд ранних цивилизаций использовали простые оптические инструменты, такие как плоские и криволинейные зеркала и выпуклые линзы, древнегреческим философам обычно приписывают первые формальные рассуждения о природе света. Концептуальное препятствие, заключающееся в том, чтобы отличить человеческое восприятие визуальных эффектов от физической природы света, препятствовало развитию теорий света. В этих ранних исследованиях преобладало созерцание механизма зрения. Пифагор ( с. 500 до н.э.) предположил, что зрение вызывается визуальными лучами, исходящими из глаза и ударяющими по предметам, тогда как Эмпедокл ( ок. 450 до н.э.), по-видимому, разработал модель зрения, в которой свет излучался как предметами, так и глазом. Эпикур ( г. ок. г. 300 г. до н.э.) считал, что свет излучается другими источниками, помимо глаза, и что зрение возникает, когда свет отражается от объектов и попадает в глаз. Евклид ( г. ок. г. 300 г. до н.э.) в своей книге «Оптика » представил закон отражения и обсудил распространение световых лучей по прямым линиям. Птолемей ( с. 100 н.э.) предпринял одно из первых количественных исследований преломления света при переходе из одной прозрачной среды в другую, сведя в таблицу пары углов падения и пропускания для комбинаций нескольких сред.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

С упадком греко-римского царства научный прогресс переместился в исламский мир. В частности, аль-Махмун, седьмой аббасидский халиф Багдада, основал Дом Мудрости (Байт аль-Хикма) в 830 г. н.э. для перевода, изучения и улучшения эллинистических научных и философских трудов. Среди первых ученых были аль-Хорезми и аль-Кинди. Известный как «философ арабов», аль-Кинди расширил концепцию прямолинейно распространяющихся световых лучей и обсудил механизм зрения. К 1000 г. от пифагорейской модели света отказались, и возникла лучевая модель, содержащая основные концептуальные элементы того, что сейчас известно как геометрическая оптика. В частности, Ибн аль-Хайтам (латинизированный как Альхазен) в Китаб аль-маназир ( ок. 1038; «Оптика») правильно приписывал зрение пассивному восприятию световых лучей, отраженных от предметов, а не активному излучению световых лучей глазами. Он также изучал математические свойства отражения света от сферических и параболических зеркал и нарисовал подробные изображения оптических компонентов человеческого глаза. Работа Ибн аль-Хайтама была переведена на латынь в 13 веке и оказала побудительное влияние на францисканского монаха и естествоиспытателя Роджера Бэкона. Бэкон изучал распространение света через простые линзы и считается одним из первых, кто описал использование линз для коррекции зрения.

Свет | Определение, свойства, физика, характеристики, типы и факты

видимый спектр света

Смотреть все СМИ

Ключевые люди:
Исаак Ньютон Альберт Эйнштейн Джеймс Клерк Максвелл Птолемей Роджер Бэкон
Похожие темы:
цвет Солнечный лучик фотон интенсивность света скорость света

Просмотреть весь связанный контент →

Популярные вопросы

Что такое свет в физике?

Свет — это электромагнитное излучение, воспринимаемое человеческим глазом. Электромагнитное излучение возникает в чрезвычайно широком диапазоне длин волн, от гамма-лучей с длиной волны менее примерно 1 × 10 −11 метров до радиоволн, измеряемых в метрах.

Какова скорость света?

Скорость света в вакууме является фундаментальной физической константой, и в настоящее время принято значение 29.9 792 458 метров в секунду, или около 186 282 миль в секунду.

Что такое радуга?

Радуга образуется при преломлении солнечного света сферическими каплями воды в атмосфере; два преломления и одно отражение в сочетании с хроматической дисперсией воды создают первичные цветовые дуги.

Почему свет важен для жизни на Земле?

Свет является основным инструментом восприятия мира и взаимодействия с ним для многих организмов. Солнечный свет согревает Землю, определяет глобальные погодные условия и запускает поддерживающий жизнь процесс фотосинтеза; около 10 22 джоулей солнечной лучистой энергии достигает Земли каждый день. Взаимодействие света с материей также помогло сформировать структуру Вселенной.

Каково отношение цвета к свету?

В физике цвет ассоциируется именно с электромагнитным излучением определенного диапазона длин волн, видимым человеческому глазу. Излучение таких длин волн составляет часть электромагнитного спектра, известную как видимый спектр, т. е. свет.

свет , электромагнитное излучение, воспринимаемое человеческим глазом. Электромагнитное излучение возникает в чрезвычайно широком диапазоне длин волн, от гамма-лучей с длиной волны менее примерно 1 × 10 −11 метров до радиоволн, измеряемых в метрах. В этом широком спектре длины волн, видимые человеку, занимают очень узкую полосу, от примерно 700 нанометров (нм; миллиардных долей метра) для красного света до примерно 400 нм для фиолетового света. Области спектра, примыкающие к видимому диапазону, часто также называют световыми, инфракрасными с одной стороны и ультрафиолетовыми с другой. Скорость света в вакууме — фундаментальная физическая константа, принятое в настоящее время значение которой равно ровно 299 792 458 метров в секунду, или около 186 282 миль в секунду.

Нет однозначного ответа на вопрос «Что такое свет?» удовлетворяет множеству контекстов, в которых свет воспринимается, исследуется и используется. Физик интересуется физическими свойствами света, художник — эстетической оценкой визуального мира. Благодаря зрению свет является основным инструментом восприятия мира и общения в нем. Солнечный свет согревает Землю, определяет глобальные погодные условия и запускает поддерживающий жизнь процесс фотосинтеза. В самом большом масштабе взаимодействие света с материей помогло сформировать структуру Вселенной. Действительно, свет дает окно во Вселенную, от космологических до атомных масштабов. Почти вся информация об остальной Вселенной достигает Земли в виде электромагнитного излучения. Интерпретируя это излучение, астрономы могут заглянуть в самые ранние эпохи Вселенной, измерить общее расширение Вселенной и определить химический состав звезд и межзвездной среды. Подобно тому, как изобретение телескопа значительно расширило возможности исследования Вселенной, так и изобретение микроскопа открыло сложный мир клетки. Анализ частот света, испускаемого и поглощаемого атомами, явился основным толчком к развитию квантовой механики. Атомная и молекулярная спектроскопия по-прежнему остается основным инструментом для исследования структуры вещества, обеспечивая сверхчувствительные тесты атомных и молекулярных моделей и способствуя изучению фундаментальных фотохимических реакций.

Свет передает пространственную и временную информацию. Это свойство лежит в основе областей оптики и оптических коммуникаций, а также множества связанных с ними технологий, как зрелых, так и развивающихся. Технологические приложения, основанные на манипулировании светом, включают лазеры, голографию и волоконно-оптические телекоммуникационные системы.

В большинстве повседневных обстоятельств свойства света можно вывести из теории классического электромагнетизма, в которой свет описывается как связанные электрические и магнитные поля, распространяющиеся в пространстве в виде бегущей волны. Однако эта волновая теория, разработанная в середине 19 в.го века недостаточно для объяснения свойств света при очень низкой интенсивности. На этом уровне квантовая теория необходима для объяснения характеристик света и взаимодействия света с атомами и молекулами. В своей простейшей форме квантовая теория описывает свет как состоящий из дискретных пакетов энергии, называемых фотонами. Однако ни классическая волновая модель, ни классическая модель частиц не описывают свет правильно; свет имеет двойственную природу, которая раскрывается только в квантовой механике. Этот удивительный корпускулярно-волновой дуализм характерен для всех первичных составляющих природы (например, электроны имеют как корпускулярный, так и волновой аспекты). С середины 20-го века физики считали законченной более полную теорию света, известную как квантовая электродинамика (КЭД). КЭД объединяет идеи классического электромагнетизма, квантовой механики и специальной теории относительности.

Викторина «Британника»

Физика и естественное право

В этой статье основное внимание уделяется физическим характеристикам света и теоретическим моделям, описывающим природу света. Его основные темы включают введение в основы геометрической оптики, классические электромагнитные волны и эффекты интерференции, связанные с этими волнами, а также основные идеи квантовой теории света. Более подробные и технические презентации этих тем можно найти в статьях «Оптика, электромагнитное излучение, квантовая механика и квантовая электродинамика». См. также относительность для получения подробной информации о том, как рассмотрение скорости света, измеренной в различных системах отсчета, сыграло решающую роль в развитии специальной теории относительности Альберта Эйнштейна в 1905 году. world

Хотя есть явные свидетельства того, что ряд ранних цивилизаций использовали простые оптические инструменты, такие как плоские и криволинейные зеркала и выпуклые линзы, древнегреческим философам обычно приписывают первые формальные рассуждения о природе света. Концептуальное препятствие, заключающееся в том, чтобы отличить человеческое восприятие визуальных эффектов от физической природы света, препятствовало развитию теорий света. В этих ранних исследованиях преобладало созерцание механизма зрения. Пифагор ( с. 500 до н.э.) предположил, что зрение вызывается визуальными лучами, исходящими из глаза и ударяющими по предметам, тогда как Эмпедокл ( ок. 450 до н.э.), по-видимому, разработал модель зрения, в которой свет излучался как предметами, так и глазом. Эпикур ( г. ок. г. 300 г. до н.э.) считал, что свет излучается другими источниками, помимо глаза, и что зрение возникает, когда свет отражается от объектов и попадает в глаз. Евклид ( г. ок. г. 300 г. до н.э.) в своей книге «Оптика » представил закон отражения и обсудил распространение световых лучей по прямым линиям. Птолемей ( с. 100 н.э.) предпринял одно из первых количественных исследований преломления света при переходе из одной прозрачной среды в другую, сведя в таблицу пары углов падения и пропускания для комбинаций нескольких сред.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

С упадком греко-римского царства научный прогресс переместился в исламский мир. В частности, аль-Махмун, седьмой аббасидский халиф Багдада, основал Дом Мудрости (Байт аль-Хикма) в 830 г. н.э. для перевода, изучения и улучшения эллинистических научных и философских трудов. Среди первых ученых были аль-Хорезми и аль-Кинди. Известный как «философ арабов», аль-Кинди расширил концепцию прямолинейно распространяющихся световых лучей и обсудил механизм зрения. К 1000 г. от пифагорейской модели света отказались, и возникла лучевая модель, содержащая основные концептуальные элементы того, что сейчас известно как геометрическая оптика. В частности, Ибн аль-Хайтам (латинизированный как Альхазен) в Китаб аль-маназир ( ок. 1038; «Оптика») правильно приписывал зрение пассивному восприятию световых лучей, отраженных от предметов, а не активному излучению световых лучей глазами. Он также изучал математические свойства отражения света от сферических и параболических зеркал и нарисовал подробные изображения оптических компонентов человеческого глаза.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *