Импульсные источники света – Работа со студийным импульсным светом

Содержание

Работа со студийным импульсным светом

Импульсный свет в студии: как работать

Студийное фотооборудование

В фотостудии мы имеем возможность создавать необходимый характер освещения с помощью источников света, светоформирующих насадок и отражателей (рефлекторов). Источники студийного света разделяются на импульсные и постоянного света.

Источники постоянного света — это мощные галогеновые лампы, потребляющие много электроэнергии и выделяющие безумное количество тепла. Поэтому их редко используют в фотографии, чаще в киносъемке.

Импульсные источники света (студийные вспышки) состоят из двух ламп, непосредственно лампы вспышки и обычной лампы «пилотного» света (далее «пилот») небольшой мощности (порядка 300W). «Пилот» необходим для того, чтобы оценить светотеневой рисунок, и его мощности недостаточно для съемки. Импульсные источники можно разделить по исполнению на два типа: моноблоки и генераторы.

В моноблоке элементы управления, лампа-вспышка и «пилот» выполнены в одном корпусе, который устанавливается на штатив и включается в розетку. В генераторе элементы управления несколькими источниками размещены в одном корпусе, а сами лампы на штативах подключаются к этому корпусу специальными проводами. Одно из удобств генераторов — это возможность быстро управлять мощностью сразу нескольких источников. Приборы генераторного исполнения обычно более высокого класса и имеют лучшие характеристики (мощность, длительность импульса, скорость перезаряда), чем моноблоки. Соответственно, они значительно дороже моноблоков.

 © malikmata52 © jeremiahkellogg

Органы управления (основные: мощность импульса, мощность «пилота») могут отличаться в зависимости от фирмы-производителя студийного оборудования и модели прибора. Шкала мощности также может быть дискретной и выражаться либо в кратных значениях или процентах от максимальной мощности, либо указываться в диафрагменных числах (ступенях). Мощность импульсных студийных источников света указывают в Джоулях (Дж). Например: 150 Дж, 300 Дж, 500 Дж, 1000 Дж.

Производители профессионального студийного фотооборудования, которое можно купить в Москве: Hensel, Bowens, Broncolor, Profoto, Rekam, Prograph, Visatec, Multiblitz, Elinchrom, «Марко», «Марко-Про», Prolinсa, GuangBao, Falcon, Raylab. Светоформирующие насадки. Насадки — это навесные конструкции, которые присоединяются к источникам света через механическое соединение (байонет) и служат для изменения характера светового потока.

Характер света

  • Направленный свет (жесткий, резкий) — свет, дающий на объекте резко выраженные переходы света и тени и в некоторых случаях блики (пример: прожектор, яркое солнце, любой точечный источник света).

  • Рассеянный свет (мягкий, бестеневой) — свет, излучаемый большой поверхностью, равномерно и одинаково освещающий объект, вследствие чего отсутствуют резкие тени, блики (пример: свет из окна, завешенного белой шторой, отраженный свет от светлой стены, пасмурная облачная погода — отражение света от облаков). Разделение насадок по характеру света:

Направленный свет — тубусы, «тарелки», соты и др. Рассеянный свет — зонты (бывает на отражение и на просвет), софт-боксы и их разновидности и др.

© pietel
© iaincaradoc

Отражатели

Пассивное световое оборудование. Сами свет не излучают, а только отражают (или просвечивают), позволяя менять его направление, характер, цветовую температуру. Обычно это белая, черная, золотая или серебристая ткань, одетая на каркас круглой или прямоугольной формы.

Синхронизация импульса

Синхронизация импульса — одновременность импульса света и открытия затвора камеры. Перечислим основные способы синхронизаторов: ИК-пускатель, синхрокабель, вспышка фотоаппарата.

  • ИК-пускатель — универсальный способ синхронизации. Это небольшая коробочка, которая крепится на место внешней вспышки вашей камеры (так называемый hot shoe, «горячий башмак»).

  • Синхронизация происходит через инфракрасный импульс, так как в моноблоках есть соответствующие устройства-ловушки.

  • Синхрокабель — синхронизация через провод, который подсоединяется в синхроразъем на источнике света и в синхроразъем камеры. Типы разъемов у разных фирм-производителей отличаются.

  • Вспышка — встроенная или внешняя вспышка вашей камеры «поджигает» остальные источники света (в них установлены «ловушки»). Для того чтобы исключить вмешательство света от вспышки фотоаппарата в световую картину, необходимо прикрыть ее (например, куском картона) и уменьшить ее мощность.

© akeeh Моноблок Elinchrom Style 400 FX © jeremiahkellogg

В большинстве камер вспышка работает так: делается оценочный импульс, необходимый для того, чтобы определить экспозицию, а затем уже основной импульс. Глаз обычно воспринимает эти две вспышки как одну, но «ловушки» в источниках света срабатывают по первому импульсу, в результате кадр получается недоэкспонированным. Решение: либо отключить оценочный импульс в камере или вспышке (если это возможно, например, на камерах Nikon), либо воспользоваться кнопкой «экспопамяти».

Иногда встречаются импульсные источники, которые умеют пропускать первый оценочный импульс и срабатывать по второму, но это редкость, и все моноблоки в студии должны быть оборудованы этой функцией. Именно поэтому способ синхронизации с помощью вспышки камеры является неудобным.

Радиосинхронизация — синхронизация по радиоканалу. Обычно это комплект приемника и передатчика. Приемник включается в синхроразъем источника света, передатчик крепится на камеру, так же как и ИК-пускатель. Плюсы: не «слепнет» на ярком солнце, японские туристы не помешают своими вспышками во время выездной фотосессии.

Экспонометрия при работе с импульсным светом

Экспоавтоматика современных камер не рассчитана на работу со студийным импульсным светом. Определить экспозицию с помощью камеры невозможно! Поэтому студийная фотосъемка проводится исключительно в ручном режиме (M, Manual) камеры.

Чувствительность матрицы

Снимайте с минимальной доступной для вашей камеры чувствительностью, чтобы избежать цифрового шума. Также я настоятельно рекомендую снимать не в JPG, а в RAW.

© phototec

Выдержка

Длительность импульса моноблоков чрезвычайно мала. Следовательно, выставляем в камере так называемую выдержку X-синхронизации (обычно 1/200–1/500 сек.). Выдержка синхронизации — минимальная выдержка, при которой полностью открыт затвор. Если поставить выдержку меньшую (более короткую), то вы получите неэкспонированную (черную) часть кадра. Если поставить более длительную выдержку, то это не повлияет на результат, ведь мощность импульсного света по сравнению с естественным светом в студии велика, а длительность импульса мала.

Вывод: при работе с импульсным светом в фотостудии управлять экспозицией с помощью выдержки невозможно. Диафрагма — единственный способ управлять экспозицией при работе с импульсными источниками, за исключением изменения мощности источников света или изменения расстояния от источника до фотомодели.

Определение правильной экспозиции

Мы уже уяснили, что можем влиять на экспозицию диафрагмой и мощностью моноблоков, но как определить верную экспозицию? Рассмотрим два варианта.

Для определения правильной экспозиции (правильной диафрагмы) существует прибор флеш-метр. По сути, это экспонометр, который, в отличие от встроенного в камеру, умеет работать с импульсным светом. Для использования флеш-метра достаточно прочитать несложную инструкцию.

Флеш-метр Seconik © jeremiahkellogg © bagaak
  • Гистограмма яркости

Если же флеш-метра нет, не стоит отчаиваться. В цифровой камере есть возможность отобразить гистограмму полученного кадра. Гистограмма яркости — это график распределения полутонов изображения, в котором по горизонтальной оси представлена яркость (полутоновые градации от черного цвета слева до белого цвета справа), а по вертикали — относительное число точек с данным значением яркости (чем выше столбец, тем больше точек).

Изучив гистограмму, мы можем получить общее представление о правильности экспозиции (определить передержку и недодержку) и оценить требуемое изменение экспозиции. При съемке нужно всего лишь стремиться, чтобы гистограмма не упиралась в верхний край, что означает «недодержку» (левая часть) или «передержку» (правая часть), и по возможности следить за равномерностью распределения гистограммы по горизонтали (зависит от специфики конкретного кадра).

Автор статьи: фотограф Игорь Алексеев

© cybele malinowski

prophotos.ru

Импульсные источники света (вспышки) - длина и форма импульса

У графика есть зум — выделите зону мышкой справа налево и она сама зуммируется. Чтобы сбросить зум справа вверху будет кнопка «reset zoom»
мс — миллисекунды
мкс — микросекунды (мс/1000)

для справки длительность движений

800 микросекунд — время удара рака богомола
1-1,4 мс — Начальная скорость винтовочной пули (700-1000 м/с). За 1 мс пуля пролетит 1 м
2-3 мс — Начальная скорость пистолетной пули (300-500 м/с). За 2 мс пуля пролетит 1 м
3 мс — продолжительность взмаха крыла комнатной мухи.
5 мс — продолжительность взмаха крыла пчелы.
7,3 мс — мировой рекорд скорости волана для бадминтона равен 493 км/ч
11 мс — официальный рекорд скорости мяча для гольфа составляет 326 км/ч
13,6 мс — Наиболее убойным ударом в мужском теннисе владеет австралиец Сэм Грог с рекордом 263,4 км/ч
19 мс — рекорд скорости полёта шайбы 51 м/сек (183,7 км/ч), 19 мс — время за которое она пролетает 1м
21 мс — мячи в бейсболе летают со скоростью примерно 170 км/ч
50 мс — время удара кулаком Брюса Ли с расстояния 1м
66 мс — время удара чемпиона мира по боксу с расстояния 1м при скорости удара 15 м/сек (данные из интернета)
5-80 мс — продолжительность взмаха крыла колибри.
200 мс — время, которое требуется человеческому мозгу для распознавания эмоций в мимике.
300 мс — время удара ногой Брюса Ли
300—400 мс — время мигания человеческого глаза.

Предположим нам нужно заснять пистолетную пулю.

Фото: Гарольд Эджертон, также известный как «papa flash». Не мог не упомянуть родоначальника скоростной фотографии, когда мы говорим о «заморозке» импульсом вспышки.

Пуля будет резкой в кадре, если сместится на 1 мм за время импульса. Значит делим 2мс за которые она пролетает 1 м на 1000 мм в метре и получаем 0,002 мс или 2 мкс. Такой должна быть длина импульса вспышки, чтобы пистолетная пуля отобразилась резко с расстояния пары метров, где её смещение в кадре на 1 мм

будет незаметным. Студийный генератор Broncolor Grafit A2 даёт самый короткий импульс в 0,112 мс, что составляет 112 мкс и соответственно он никак не может «заморозить» полёт пули.

Предположим, вы решили заснять («заморозить») удар рукой Брюса Ли, что было невозможно или очень сложно во времена когда он снимался в кино. Казалось бы, даже на 1600 Дж генератор даёт импульс в 4 мс, а длительность удара рукой Брюса составляет 50 мс. Но если вы будете ориентироваться по всему времени, которое затрачивает Брюс на удар, то у вас будет размазанное движение. Вам нужно чтобы его рука почти не успела сдвинуться. Тогда возьмем путь его руки в 1 мм, а не в 1м, как в списке. Тогда вам нужно поделить 50 мс на 1000, чтобы получить время за которое его рука пройдёт 1 мм (чтобы в кадре она выглядела как статичная). Вы получите 50 мкс, а генератор даёт минимальный импульс в 112 мкс. Вывод такой, что даже на минимальном импульсе его рука успеет пройти ~ 2 мм. В целом на снимке это будет не сильно заметно, почти статично. Но всё-таки не полностью «заморожено»! 🙂

к содержанию ↑

Фотография существует потому, что есть свет. Света бывает мало, а бывает много. Но если уменьшить его количество легко, то увеличить количество света бывает весьма тяжело и этом сложном деле нам помогают импульсные источники освещения, как наиболее эффективные приборы для увеличения количества света, чтобы мы могли спокойно заниматься фотосъемкой, реализовывать свои самые интересные идеи, будучи не ограничены количеством и качеством света.

к содержанию ↑

Что такое длительность импульса и зачем нужна

Если вы ранее не снимали студийными вспышками, то возможно считаете, что единственный способ «заморозить» (остановить в кадре) движение — это поставить короткую выдержку на фотокамере.

Но когда вы попадаете в условия фотостудии, то частенько сталкиваетесь с тем, что практически неважно, какая выдержка стоит у вас на фотокамере. Т.е. вам сразу объяснят, что есть такое понятие, как «максимальная выдержка синхронизации со вспышкой». Для разных камер она своя.

Чаще всего в студии используют выдержку синхронизации 1/125 сек. Это не догма и вы можете использовать любую, вплоть до максимальной для вашей камеры (может быть 1/200 или 1/250 для зеркальной камеры). Традиция на 1/125 сек пошла со среднеформатных камер, хотя на сегодняшний день многие из них имеют выдержку синхронизации 1/800 и 1/1600 сек, благодаря центральному затвору в объективе.

к содержанию ↑

Почему не важно какая у вас стоит выдержка при фотосъемке со вспышкой в студии

Дело в том, что при съемке со вспышкой в студии мы весь светотеневой рисунок создаём вспышкой (обычно) и наоборот избегаем постоянного света. В частности, для того чтобы избежать смещения цветовой температуры света от вспышки и от постоянного света (лампы на потолке).
При установленной диафрагме F11 на камере и выдержке 1/125 сек мы не регистрируем постоянный свет на сенсоре. Его как бы нет, он превращается в чёрный.
А вот мощный свет вспышки спокойно проходит через узенькую дырочку диафрагмы и экспонирует снимок. Таким образом мы получаем картинку только за счёт вспышки, даже если у нас включены лампы на потолке и в фотостудии светло.

к содержанию ↑

Если мы вдруг начнём снимать на открытой диафрагме, то столкнемся с двумя проблемами

1) Вспышка засвечивает кадр. Не все моноблоки позволяют ставить такую малую мощность, чтобы работать на открытой диафрагме. Это можно обойти, если использовать сплошные нейтрально-серые фильтры на объектив (аналогия с пейзажной съемкой).

2) Постоянный свет ламп на потолке мешает съемке. Свет ламп с потолка и свет солнца из окна начнут оказывать влияние на снимок. Но учитывая то, что цветовая температура света от ламп накаливания другая, в кадре он будет отображаться оранжевым шлейфом за моделью, если у вас баланс белого настроен на вспышку.

к содержанию ↑

Заморозка импульсом

Итак, мы не можем поставить очень короткую выдержку на фотокамере, потому как мы ограничены выдержкой синхронизации со вспышкой. Причем нам нет смысла вообще связываться с выдержкой т.к. она имеет отношение к постоянному свету, а в фотостудии мы работаем только диафрагмой, чтобы оказывать влияние на импульсный свет вспышки.

к содержанию ↑

Как же «замораживают» движение в фотостудии?

Для того, чтобы «заморозить» движение в фотостудии используют вспышки с коротким импульсом разряда.

к содержанию ↑

Как выглядит этот самый пресловутый импульс?


Иллюстрация из каталога компании Broncolor, Швейцария.

к содержанию ↑

У импульса два важных параметра: t0.5 и t.01.

t0.1 — Полная длина импульса. Это время, в течение которого сила света вспышки превышает 10 % пикового значения. Если в технических характеристиках вспышки не указывается общая длительность вспышки, можно допустить — основываясь на математической форме кривой — что общая длительность вспышки t0.1 приблизительно в три раза больше, чем фактическая длительность вспышки.

t0.5 — это время, в течение которого сила излучения вспышки составляет более 50 % от пикового значения.

t0.5 было использовано производителями вспышек изначально т.к. считалось, что тянущийся «хвост» импульса малой амплитуды мало влияет на экспозицию и им можно пренебречь.

На экспозицию тянущийся «хвост» после t0.5 влияет слабо, а вот на цветовую температуру и главное на «заморозку» движения он влияет существенно.

к содержанию ↑

Контроль цветовой температуры

Импульс не просто так нарисован цветным. Цвета на кривой обозначают изменение цветовой температуры света в зависимости от амплитуды импульса.
Простыми словами: в начале вспышки выходит фиолетовый свет, на максимуме он синий, а дальше постепенно краснеет и в конце совсем красный.
Это важно, т.к. Баланс Белого на снимке определяется цветом света, которым мы экспонировали снимок.
Если будет преобладать синяя составляющая импульса, то и снимок будет синить. Если красная — уйдёт в теплые тона. Так и случается на плохих вспышках (а тем более на источниках постоянного света с диммером), когда мы регулируем мощность.

Это всё подводит нас к тому, что при попытках манипулировать с импульсом мы меняем цветовую температуру света и нужны дополнительные усилия, чтобы в получить идеальные для фотостудии 5500К (что соответствует белому дневному свету).

к содержанию ↑

к содержанию ↑

Встроенные вспышки

Вспышка встроенная в камеру. Обычно находится на верхней части камеры. Отличается маленькой мощностью (можно только уменьшить, внеся поправку в камере), отсутствием гибкости в работе (она не отсоединяется и свет всегда «в лоб», зависит от аккумулятора камеры, не имеет насадок.

к содержанию ↑

Накамерные вспышки

Устанавливаются в «горячий башмак» фотокамеры. Могут иметь разную мощность, но самые мощные, как правило, не превышают 80 Дж. Очень гибкие в работе, работают автономно от камеры.

Обзоры накамерных вспышек

к содержанию ↑

Моноблоки

Моноблок — это вспышка со встроенным адаптером питания. Как правило, работает от сети, хотя сейчас появились моноблоки с аккумулятором и моноблоки с работой и от сети и от аккумулятора.

Моноблоки значительно крупнее, чем накамерные вспышки, но позволяют использовать все студийные модификаторы света, что очень важно. Ведь «голой» вспышкой много не сделаешь. Также моноблоки бывают гораздо бОльшей мощности, чем накамерные вспышки (вплоть до 1500 Дж).
Работа моноблока от дизельного генератора не рекомендуется — можно сжечь моноблок.

Обзоры моноблоков

к содержанию ↑

Импульсные генераторы

Импульсный генератор представляет из себя по сути миникомпьютер (т.к. есть процессор, память, экран и проч.), блок питания, конденсаторы и сложные платы контроля импульса разряда. Проще говоря — это «венец творения» импульсных источников света.

Генераторы бывают студийные т.е. питающиеся от розетки и аккумуляторные, питающиеся от аккумулятора.

На фото — аккумуляторный генератор Profoto B2

На фото — студийный генератор Profoto Profoto Pro-8a Air

Студийные генераторы обычно мощнее т.к. там нет задачи экономить заряд. Некоторые студийные генераторы могут питаться от дизельного генератора и таким образом становится мобильными.
Мощность студийного генератора может достигать 6400 Дж, но чаще всего используются студийные генераторы 1600 дж, 2400 Дж и 3200 Дж (а аккумуляторные как правило от 250 Дж до 1200 Дж).

к содержанию ↑

На что стоит обратить внимание при покупке моноблока или генератора

к содержанию ↑

Мощность

Чем мощнее прибор, тем легче абстрагироваться от постоянного света и работать только с тем, который вы сами создаете с помощью источника импульсного света. Т.е. если источник импульсного света в помещении, при большой его мощности вы можете даже не зашторивать окна. По сравнению с его мощностью камера просто не увидит свет из окна, как будто там ночь.
Тоже самое касается использования источника импульсного света на улице. Слабый источник может позволить вам работать в технике «смешанного» света, когда видно и то что освещено вспышкой и то что освещено солнцем, а мощный источник импульсного света может делать из дня ночь и контролировать освещение объекта съемки как угодно.

На фото — студийный генератор Broncolor Scoro A4s

к содержанию ↑

Регулировка мощности

Казалось бы взяли мощный прибор, о чём еще мечтать? А мечтать еще хочется об универсальности применения. Ведь не всё же вы время снимаете на максимуме мощности. Иногда света нужно весьма мало, если снимаете что-то маленькое с близкого расстояния. Или снимаете на открытой диафрагме (да, с импульсным светом, вопреки заблуждениям, тоже снимают на открытых диафрагмах).
Вот и получается, что казалось бы маловажные цифры 1/16, 1/32, 1/64 принимают уже вполне понятные очертания.

Например, у генератора Profoto Pro-8a Air предусмотрена регулировка от 5 до 2400Дж, что очень хорошо. Он может дать очень слабый импульс, а может дать очень мощный.
Broncolor Scoro A4s диапазон 3 — 3200 Дж (10 ступеней).

к содержанию ↑

Постоянство цветовой температуры

график разряда вспышки

Как видите, в зависимости от фазы импульса цветовая температура разная. Начинается с фиолетового, потом синий и в конце красный.
Конечная цветовая температура света определяется амплитудой разряда в каждой фазе и длиной этой фазы.

Если, например, растянуть красный хвост импульса при том, что у него будет оставаться более-менее значимая амплитуда, то цветовая температура уйдёт в тёплые тона. Если его отрезать и оставить только фиолетово-синюю составляющую, то цветовая температура уйдет в холодные тона.

В дешевых импульсных источниках с этим никак не борются и потому цветовая температура «гуляет» как ей хочется. Особенно это касается моноблоков, где параметры импульса зависят от источника питания моноблока, от его конденсатора и лампы. Меняя мощность моноблока относительно других моноблоков вы рискуете получить другую цветовую температуру и тогда свет где-то будет белый, а где-то нет. Поправить такое в фотошопе невозможно (ну или крайне сложно, если уж принципиально пытаться поправить).
Сразу скажу, что есть приличные моноблоки с более-менее постоянной цветовой температурой, а есть те, где цветовая температура сильно меняется, в зависимости от мощности прибора.

Зато в импульсных генераторах используются разные методы контроля цветовой температуры (например, у Broncolor это CTC и более новая ECTC) и она меняется очень мало на всём диапазоне мощности современного генератора. Даже самый лучший поляризационный фильтр меняет цветовую температуру примерно на 150 К, так что уж говорить про 40К, которые бывают заявлены как диапазон колебания цветовой температуры у импульсного генератора.). Правда в случае контроля цветовой температуры импульс вспышки становится существенно длиннее, так что «замораживать» при контроле цветовой температуры сложнее.

к содержанию ↑

Скорость перезарядки

Если вы не видели как «строчат» из импульсного генератора на мастерклассах, когда его доверяют новичкам, то вы не знаете, что такое быстрая перезарядка импульсного источника света 🙂

Ни один моноблок не может так быстро перезаряжаться (хотя сейчас появились очень быстрые на перезарядку моноблоки, например, Profoto D2), а если вы снимаете фешн или просто быстротекущие процессы (всплески, струи, порошки), то скорость перезарядки прибора для вас очень критична.

к содержанию ↑

На примере студийного генератора Profoto Pro-8a Air

Генератор по мере готовности издает звуковой сигнал (можно отключить), а на Profoto Pro-8a Air еще загорается белая кнопка «test» (на снимке ниже горит она оранжевым).

Здесь вы видите подключенную одну световую головку (один круглый разъем занят). Мощность этой световой головки выставлена на 1.0, что соответствует минимальной мощности в 5 Дж.
Выставляется можность крутящимися ручками, которые переключаются по 0.1 стопа и издают характерный щелкающий звук, так что можно контролировать на сколько переключил даже не глядя на ЖК-экранчик под разъемом (удобно при съемке в полутёмной студии).
С правой стороны на панели мы видим переключатель «speed». Не сразу догадаешься, что это контролируется скорость перезарядки генератора. Колёсико, которое контролирует положение переключателя находится сбоку на генераторе.

Контроль скорости перезарядки генератора нужна для использования его при питании от слабых электрических сетей и от дизельных генераторов. Так сказать «на выезде» мы используем медленную перезарядку, а на надежных сетях максимально быструю.

Импульсный генератор Profoto Pro-8a Air способен перезаряжаться за 0.05 сек на минимальной мощности и за 0.9 сек на максимальной, до 2400 Дж!
Т.е. каждые 0.9 сек генератор способен выдавать 2400 Дж мощности!

к содержанию ↑

Охлаждение и защита от перегрева

Важный момент — это система охлаждения импульсного источника света. При выходе такого потока света за столь короткий промежуток времени лампа и сам источник нагреваются. Если перегреется импульсный источник — он выйдет из строя. Если перегреется лампа — она взорвётся. В наше время лампы уже не взрываются в нормальных приборах и везде стоит контроль температуры лампы. Даже в накамерных вспышках от Canon такой контроль и стоит и при перегреве вспышка перестает срабатывать.

А теперь представьте, что было бы, если бы не было охлаждения прибора? Студийные вспышки используются не так, как накамерные, у них скорость заряда выше и потому срабатывают они чаще (так уж их используют). Если нет активной системы охлаждения (встроенных вентиляторов), то вспышка просто выключается и простаивает, пока не остынет сама собой. Именно так происходит на дешевых студийных вспышках.
При покупке рекомендую обратить внимание на этот параметр т.к. может получиться, что вы будете больше ждать, чем снимать.

В генератора импульсного света, как правило, встроено несколько вентиляторов и проблем с перегревом у него нет.

Есть и защита от перегрева лампы. Раз уж генератор так быстро перезаряжается, то можно обеспечить очень большой поток энергии за короткое время и вы рискуете сами разрушить лампу, если будете хлопать вспышкой как пулеметчик в течении долгого времени (тем более и по звуку похоже 🙂 ). Вот потому генератор тоже вам через некоторое время работы «очередями» на большой мощности приостановит работу для охлаждения лампы (я сам до этого пределах не доходил т.к. дойти до него очень сложно да и не надо). Это актуально для тех, кто снимает, например, церкви и нужно дострелить вспышкой до купола церкви. Одним импульсом это невозможно, потому набирают мощность многократными импульсами на полной мощности генератора и на длинной выдержке. Другого такого примера из реальной жизни я не знаю, где можно было бы перегреть лампу в нормальной ситуации.

к содержанию ↑

Размер и вес

Я думаю понятно, что все бонусы генераторов достигаются более сложной конструкцией. Потому размер генератора относительно большой (а к нему нужны еще световые головки).

Cветовая головка ProHead

Но это меньше даже, чем системный блок обычного компьютера.
Стационарные генераторы предполагается возить на машине, так что в багажнике машины их поместится много и пределом скорее будет служить ваш бюджет, нежели размер генератора.

Весит генератор, например, Profoto Pro-8a Air — 12кг, т.к. внутри у него кроме электронных схем еще массивные медные катушки и алюминиевые радиаторы охлаждения.

Моноблоки, как правило, весят меньше. Особенно это касается небольших аккумуляторных моноблоков типа Profoto B10.

к содержанию ↑

T.MIN - форма импульса Broncolor Grafit A2

3.9 EV (23 Дж, t.min)

4 EV (25 Дж, t.min)

5 EV (50 Дж, t.min)

6 EV (100 Дж, t.min)

7 EV (200 Дж, t.min)

8 EV (400 Дж, t.min)

9 EV (800 Дж, t.min)

10 EV (1600 Дж, t.min)

evtifeev.com

Постоянные и импульсные источники света

 

И так вы многое умеете у вас хороший фотоаппарат, и вы думаете, а может мне организовать студию? Но вы не знаете, какой свет для студии выбрать постоянный или импульсный. И вообще, какая между ними разница, и зачем на придумывали так много, аж два вида источников света? И еще много вопросов мучает не искушенного человека, и сейчас мы попытаемся в этом разобраться.

Сначала надо понять, а что каждая разновидность источников света из себя представляет.

Постоянные источники света

Постоянные потому что светят постоянно, пока подключены к электрической разетке. Работают на основе различных ламп; галогенных, флуоресцентных, метало галогенных, ламп накаливания, светодиодных.

Имеют рад достоинств.

Например, при их использовании сразу виден светотеневой рисунок, то есть вы в видоискатель видите ту картинку, которая получится после съемки, работает правило, как увидел, так и снял.

Возможность серийной, скоростной сьемки.

Так же к достоинствам можно отнести относительную дешевизну, и простоту использования. Экспозицию можно выставлять прямо по натуре, не нужны средства синхронизации.

Постоянные источники света бывают регулируемые, то есть имеющие регулировку по мощности освещения, и не регулируемые.

Для данного типа осветительных приборов выпускаются всевозможные светоформирующие насадки и приспособления.

Еще не маловажным достоинством данного типа источников освещения является возможность изготовлять их самостоятельно, относительная простота конструкции раскрывает широкие возможности для тех фотографов, кто любит мастерить оборудование самостоятельно.

Из недостатков можно отметить относительную маломощность при равных массогабаритных показателях, по сравнению с импульсными источниками света.

Большое энергопотребление в связи с тем, что много энергии расходуется в пустую, работая даже тогда когда фотографирование не происходит.

Также данные источники освещения сильно нагреваются сами и нагревают окружающее их пространство, то ест, в студии через некоторое время после включения осветителя может стать жарко, модели станут потеть косметика течь, натюрморты с едой портится терять привлекательный вид, придется тратиться еще и на систему вентиляции и охлаждения помещения.

Мощность данных приборов измеряется в Ватах (W) например 60w или 100w, сколько ват у лампы, или суммарная мощность в ватах нескольких ламп, если в приборе их несколько, столько и у всего прибора. Часто используются те же лампы что и в быту и, меняя лампы разной мощности можно регулировать интенсивность светового потока.

Надо сказать, что с появлением все возможных инноваций в сфере осветительных технологий некоторые перечисленные проблемы стали менее заметны. Например, энергосберегающие лампы меньше потребляют электричества, многие современные лампы при той же мощности светового потока, значительно меньше нагреваются.

Многие студийные фотографы по-прежнему с удовольствием пользуются постоянными источниками света, особенно в портретной фотографии.

 

Импульсные источники света

Данный тип осветителей светит только в тот момент когда срабатывает затвор камеры, производя мощный световой импульс, потому и называется импульсным.

Часто импульсные источники света называют вспышками.

Существует три вида данных источников это; накамерная вспышка, моноблок, и генераторные вспышки.

Первые это достаточно не большой прибор, который чаше всего используется как более мощный и более совершенный аналог встроенной вспышки, то есть из фотокамеры и осветительного прибора составляют по средствам горячего башмака единое устройство, которое позволяет производить фотографирование в условиях плохой освещенности, но в более широком диапазоне возможностей, чем встроенная вспышка.

Данный прибор может работать не только в качестве накамерной, но и как студийная вспышка. Для нее выпускается множество разнообразных приспособлений значительно расширяющих ее возможности. И важная особенность данное устройство работает не зависимо от электросети, что делает его очень мобильным.

Подробнее про накамерные вспышки читайте в статье «Выбор и использование внешней накамерной вспышки».

Моноблок, это разновидность студийной вспышки, у которой все элементы устройства находятся в одном корпусе, достаточно с помощью электропровода подсоединить ее к стандартной розетке, и прибор готов к использованию. Она относительно компактна, но это достаточно тяжелый механизм, который не всегда удобно использовать, особенно на все возможных сложных системах установки светотехники, таких например как журавль.

Да и на обычной стойке, центр тяжести получается слишком высоко, и велик риск опрокидывания всей конструкции, соответственно упавшая даже с не большой высоты вспышка с большой вероятностью будет повреждена.

Моноблоки достаточно мощны относительно постоянных источников света, и накамерных вспышек, но уступают в мощности генераторным вспышкам.

Все органы управления располагаются на задней или боковой стенках моноблока, что относительно удобно, не нужно наклоняться, чтобы рассмотреть показания приборов. Настройки у большинства подобных устройств достаточно гибки, имеют большой диапазон. С ними можно использовать различные синхронизаторы. Также в большинстве современных моноблоков как штатная присутствует возможность синхронизации по световому каналу, и можно настроить вспышку как ведомую или ведущую. Если предполагается что в вашей студии будет потребность в построении сложных световых схем из нескольких вспышек то синхронизация по световому каналу обязательно должна присутствовать в комплекте, который вы будете покупать. Это самый дешевый вариант первая вспышка поджигается по средствам кабеля или радио синхронизатора, остальные загораются по световому каналу от первой.

Также в данной категории осветителей есть очень бюджетные, вплоть до того что совсем без регулировок, с постоянной мощностью импульса, или с минимальными регулировками, например две три ступени интенсивности импульса. Но если у вас очень ограниченный бюджет то это не плохой вариант для старта. Правда купить такие вспышки можно не везде, я живу в краевом центре и в местных фотомагазинах я подобных вспышек, последние года три не видел (информация на 2015г), можно сказать, что это редкость, но на просторах интернета, если захотите, найдете.

Вспышки генераторного типа

Вспышки данного типа состоят из генератора, который одновременно является блоком управления, и осветительной головки. В генераторе генерируется электроэнергия и передается на головку по средствам кабеля. К одному генератору могут быть подключены несколько головок, что часто решает проблему синхронизации. Считается что генераторные вспышки в среднем мощней моноблоков и как правило они дороже.

Осветительные головки легче моноблоков, при установке на стойки, проблема с высоким центром тяжести ощущается меньше, хотя кабель тоже может создавать похожие проблемы, но в данном случае при падении головки повредится только часть вспышки, которую легче и дешевле починить, или заменит на новую.

Все студийные вспышки не зависимо от конструкции имеют по две лампы, это импульсная лампа, которая собственно и производит пых (жаргонное название светового импульса), и пилотная, которая формирует пилотный свет. В каждой студийной вспышке есть источник постоянного света, с помощью которого можно увидеть примерную и  общую светотеневую картину, которая получится на фотографии. Он то и называется пилотным. Лампа пилотного света значительно менее мощная, чем импульсная.

Мощность вспышек измеряется в Джоулях, например; 200 Дж, 500 Дж, 1000 Дж.

Синхронизация импульса  производится разными способами.

  • Синхрокабель — синхронизация через кабель, который подсоединяется через синхроразем, к вспышке и через переходник к горячему башмаку камеры.
  • ИК-пускатель — универсальный способ синхронизации, с помощью инфракрасного импульса, выглядит как не большая коробка, которая подключается с помощью, горячего башмака к камере. Это разновидность синхронизации с помощью светового импульса, но импульс производится в невидимом для человеческого глаза диапазоне.
  • Вспышка — синхронизация по средствам вспышки, как и предыдущий способ, это синхронизация с помощью светового импульса и светоулавливающих элементов. Поджигающая вспышка может быть встроенная или накамерная или подсоединенная с помощью других способов синхронизации, от ее импульса поджигаются остальные.
  • Радио синхронизатор — прибор выглядит как две небольшие коробки, одна передатчик который подсоединен через горячий башмак к камере, другой приемник который подсоединен к вспышке, передатчик производит радиосигнал во время срабатывания затвора, приемник улавливает его и поджигает вспышку.

Все источники света как импульсные, так и постоянные могут, оснащаются все возможными приспособлениями формирующими свет, они так и называются светоформирующие насадки. Подсоединение данных насадок происходит по средствам байонета, которые бывают разных размеров, как правило, байонеты различаются по диаметру, иногда по способу крепления. Бывают насадки, которые крепятся к другим насадкам, например к рефлектору могут крепиться шторки.

Есть насадки специализированные только для одного типа осветительных приборов, например, для накамерных вспышек.

Надо сказать, что возможна регулировка мощности не штатными средствами, то есть чем больше все возможных светоформируюших приспособлений между источником света и натурной постановкой, тем меньше интенсивность освещения.

В силу того что импульсные источники света в среднем значительно мощнее, потери света при использовании насадок менее ощутимы чем при использовании постоянного света.

Многие профессиональные фотографы используют в своей работе, как постоянные источники света, так и импульсные, причем иногда одновременно. Хотя конечно особенности присущие каждому типу налагают некоторые ограничения, и формируют предпочтения. Например, малая мощность постоянного света иногда не позволяет снимать большие масштабные сцены, или выстраивать очень сложные световые схемы. Но в портретной фотографии многие отдают предпочтение именно постоянному свету. А такое направление в технологии освещения как страбизм не мог бы существовать без накамерных вспышек, хотя в нем иногда используют постоянные источники света, например бытовые фонарики.

И здесь вам нужно понять, а что и как вы собираетесь снимать, для каких целей вам нужна студия. Можно пойти по пути универсализации, например, считается, что набор из трех вспышек мощностью 300 Дж, подойдет для решения почти всех задач, которые могут возникнуть у начинающего фотографа. Хотя я до сих пор использую моноблоки мощностью 200Дж для сьемки предметки, и натюрмортов, да и для портрета данной мощности вполне хватает. Но без постоянного света тоже не обхожусь, часто использую его в различных световых схемах.

Удачных всем снимков, осваивайте световое оборудование.

www.bodu9.ru

Импульсный свет - история и обзор существующих источников

Результатом  экспериментов ученых,  длившихся более века стало изобретение импульсных газоразрядные ламп,  которые  стали давать свет  близкий по интенсивности к солнечному, что  расширило  границы  творчества тысячам фотографов.

Можно сказать, что первопроходцами  стали  в середине 19 ого века магниевые  проволоки , которое при  воспламенении  давали  достаточно  яркий свет.

На смену им пришли   с 1880 года   смеси порошка магния, поташа и сульфида сурьмы.

Эта «горючая смесь давала еще  более яркий свет  однако,  при сгорании образовывалось    белое  химически опасное облако,  кроме того,  сама  смесь   взрывоопасна,  из-за чего  тогдашним  фотографам  приходилось порой страдать.  Как говорится, искусство требует жертв.

И только в 1930-е годы начали  использовать алюминий  в виде стружки  или фольги  в герметично запаянной стеклянной колбе содержащей кислород, воспламенение  происходило уже  благодаря электрической искре.  Производство такие лампы было поставлено на поток,  но  ограмным минусом этих ламп было то, что  они были «одноразовыми».  Представьте себе,  сколько  нужно бы было  с собой  возить   сумок одних только ламп, что бы снять  скажем  свадьбу….

В результате  экспериментов с использованием импульсной лампы, наполненной неоновым газом,  и изобретения  конденсатор  накапливающих большой электрический заряд стало возможным  создание ламп  которыми мы  (фотографы) пользуемся  повседневно.

Немного теории

Импульсные газоразрядные лампы – это мощные источники света, спектральная характеристика которых близка к дневному свету. Лампы, применяемые в фотографии 

01

02

представляют собой стеклянную или кварцевую трубку, заполненную инертным газом – ксеноном – под давлением 0,1-1,0 атм, в торцы которой вварены электроды из молибдена или вольфрама. Газ, находящийся внутри лампы, не проводит электричество. Для ее включения (поджига) существует третий электрод – поджигающий – в виде мастики, прозрачного слоя двуокиси олова или созданный намоткой никелевой проволоки на поверхность баллона. При подаче на электроды напряжения не ниже напряжения зажигания и высоковольтного (>10 000 В) поджигающего импульса между катодом и поджигающим электродом (или путем приложения к электродам напряжения, достаточного для пробоя газа в лампе) лампа зажигается. Импульс высокого напряжения ионизирует газ в колбе лампы вдоль этого внешнего электрода, создавая ионизированное облако, соединяющее положительный и отрицательный электроды лампы, давая возможность ионизации газа теперь между этими двумя потенциалами лампы. В силу того, что сопротивление ионизированного газа очень мало, (от 0,2 Ом до 2-5 Ом), электрическая энергия, накопленная на конденсаторе за очень короткий промежуток времени (1/10000 с – 1/500 с), превращается в световую энергию. Регулируя расстояние между электродами и давление газа в колбе, можно получать лампы разной световой мощности. Мощность импульсных ламп измеряется в джоулях (ватт/секундах) по формуле:

Емакс. = [С (Uзаж. - Uпог.)^(2)] : 2,

где С – емкость конденсатора (фарада), Uзаж. - напряжение зажигания (вольт), Uпог. – напряжение погасания (вольт), Емакс. – максимальная энергия (вт/с).

Знание параметров лампы необходимо, чтобы обеспечить ее длительную эксплуатацию и высокую надежность в работе. Напряжение на накопительном конденсаторе должно превышать напряжение зажигания лампы на 50-100 В, а подводимая энергия не должна быть выше паспортного значения для данного типа лампы. При среднем сроке службы импульсных ламп, достигающем десятки тысяч импульсов, повышение максимальной подводимой энергии в 2 раза сокращает срок службы лампы всего лишь до 10 раз, а превышение в 4-5 раз может вызвать взрыв лампы.

Типовая схема зажигания лампы в фотовспышках хорошо известна многим фотографам.

03

Переменное напряжение, поступающее из сети, через токоограничивающий резистор R1 выпрямляется диодами D1 и D2 до постоянного напряжения. Электролитический конденсатор С1 начинает заряжаться и через какое-то время накопит энергию, которая сможет разрядиться на импульсной лампе L. Но напряжения на выводах этого конденсатора не достаточно, чтобы лампа смогла дать импульс. Для зажигания лампы существует следующая цепь, составляющая колебательный контур, состоящая из небольшой емкости С2 и повышающего трансформатора Т. При замыкании синхроконтакта Х заряженный конденсатор начинает разряжаться через первичную обмотку трансформатора, генерируя колебательный процесс. Возникшая в первичной обмотке трансформатора ЭДС создает на вторичной обмотке трансформатора напряжение, в десятки раз превосходящее начальное. Импульса этого высокого напряжения достаточно для ионизации газа в трубке импульсной лампы. Лампа зажигается.

Кварцевые баллоны импульсных ламп пропускают свет с длиной волны от 155 нм до 4500 нм, стеклянные – от 290 нм до 3000 нм.

04

Излучение импульсных ламп начинается в ультрафиолетовой части спектра и вынуждает производителей наносить на них специальное покрытие, которое должно «отрезать» эту часть спектра. Такие импульсные лампы имеют золотистое напыление на поверхности колбы (примерно 10-12% желтого), которое не только отрезает ультрафиолетовую область спектра, выступая в качестве UV фильтра, но и корректирует цветовую температуру импульсного источника под фотографический стандарт 5500 К.

05

Лампы, не имеющие такого покрытия,

06

как правило, изготовлены из стекла либо заполнены смесью ксенона с другими газами, компенсирующими избыточное синее излучение, либо вынуждают фотографа использовать внешний стеклянный колпак (Pyrex), на который нанесено цветоисправляющее покрытие, либо работают в режиме с большей длительностью импульса, так как еще одна особенность импульсных ламп - изменение цветовой температуры с течением времени: в начале импульса она была холодная, с преобладанием синих лучей, к концу свечения – разряд в колбе лампы почти что превращается в тлеющий разряд, где относительно большое количество теплых лучей в спектре излучения.

07

Поэтому лампы с длительным импульсом (с большим внутренним сопротивлением) имеют цветовую температуру, изменяющуюся по времени, приближающуюся в среднем значении к 5500-5600 К. Это немного напоминает анекдот про «среднюю температуру по больнице». Недостаток таких ламп – сильно растянутый по времени импульс и невозможность глубокой регулировки мощности лампы изменением напряжения на ее выводах без изменения цветовой температ

fotopro.by

Работа со студийным импульсным светом

Студийное фотооборудование

В фотостудии мы имеем возможность создавать необходимый характер освещения с помощью источников света, светоформирующих насадок и отражателей (рефлекторов). Источники студийного света разделяются на импульсные и постоянного света.
Источники постоянного света — это мощные галогеновые лампы, потребляющие много электроэнергии и выделяющие безумное количество тепла. Поэтому их редко используют в фотографии, чаще в киносъемке.
Импульсные источники света (студийные вспышки) состоят из двух ламп, непосредственно лампы вспышки и обычной лампы «пилотного» света (далее «пилот») небольшой мощности (порядка 300W). «Пилот» необходим для того, чтобы оценить светотеневой рисунок, и его мощности недостаточно для съемки. Импульсные источники можно разделить по исполнению на два типа: моноблоки и генераторы.
В моноблоке элементы управления, лампа-вспышка и «пилот» выполнены в одном корпусе, который устанавливается на штатив и включается в розетку. В генераторе элементы управления несколькими источниками размещены в одном корпусе, а сами лампы на штативах подключаются к этому корпусу специальными проводами. Одно из удобств генераторов — это возможность быстро управлять мощностью сразу нескольких источников. Приборы генераторного исполнения обычно более высокого класса и имеют лучшие характеристики (мощность, длительность импульса, скорость перезаряда), чем моноблоки. Соответственно, они значительно дороже моноблоков.

Нажмите, чтобы увеличить

© malikmata52

Нажмите, чтобы увеличить

© jeremiahkellogg

z

Органы управления (основные: мощность импульса, мощность «пилота») могут отличаться в зависимости от фирмы-производителя студийного оборудования и модели прибора. Шкала мощности также может быть дискретной и выражаться либо в кратных значениях или процентах от максимальной мощности, либо указываться в диафрагменных числах (ступенях). Мощность импульсных студийных источников света указывают в Джоулях (Дж). Например: 150 Дж, 300 Дж, 500 Дж, 1000 Дж.

Производители профессионального студийного фотооборудования, которое можно купить в Москве: Hensel, Bowens, Broncolor, Profoto, Rekam, Prograph, Visatec, Multiblitz, Elinchrom, «Марко», «Марко-Про», Prolinсa, GuangBao, Falcon, Raylab. Светоформирующие насадки. Насадки — это навесные конструкции, которые присоединяются к источникам света через механическое соединение (байонет) и служат для изменения характера светового потока.

Характер света

  • Направленный свет (жесткий, резкий) — свет, дающий на объекте резко выраженные переходы света и тени и в некоторых случаях блики (пример: прожектор, яркое солнце, любой точечный источник света).
  • Рассеянный свет (мягкий, бестеневой) — свет, излучаемый большой поверхностью, равномерно и одинаково освещающий объект, вследствие чего отсутствуют резкие тени, блики (пример: свет из окна, завешенного белой шторой, отраженный свет от светлой стены, пасмурная облачная погода — отражение света от облаков). Разделение насадок по характеру света:
Направленный свет — тубусы, «тарелки», соты и др. Рассеянный свет — зонты (бывает на отражение и на просвет), софт-боксы и их разновидности и др.

Нажмите, чтобы увеличить

© pietel

Нажмите, чтобы увеличить

© iaincaradoc

z

Отражатели

Пассивное световое оборудование. Сами свет не излучают, а только отражают (или просвечивают), позволяя менять его направление, характер, цветовую температуру. Обычно это белая, черная, золотая или серебристая ткань, одетая на каркас круглой или прямоугольной формы.

Синхронизация импульса

Синхронизация импульса — одновременность импульса света и открытия затвора камеры. Перечислим основные способы синхронизаторов: ИК-пускатель, синхрокабель, вспышка фотоаппарата.
  • ИК-пускатель — универсальный способ синхронизации. Это небольшая коробочка, которая крепится на место внешней вспышки вашей камеры (так называемый hot shoe, «горячий башмак»).
  • Синхронизация происходит через инфракрасный импульс, так как в моноблоках есть соответствующие устройства-ловушки.
  • Синхрокабель — синхронизация через провод, который подсоединяется в синхроразъем на источнике света и в синхроразъем камеры. Типы разъемов у разных фирм-производителей отличаются.
  • Вспышка — встроенная или внешняя вспышка вашей камеры «поджигает» остальные источники света (в них установлены «ловушки»). Для того чтобы исключить вмешательство света от вспышки фотоаппарата в световую картину, необходимо прикрыть ее (например, куском картона) и уменьшить ее мощность.

Нажмите, чтобы увеличить

© akeeh

Нажмите, чтобы увеличить

Моноблок Elinchrom Style 400 FX © jeremiahkellogg

z

В большинстве камер вспышка работает так: делается оценочный импульс, необходимый для того, чтобы определить экспозицию, а затем уже основной импульс. Глаз обычно воспринимает эти две вспышки как одну, но «ловушки» в источниках света срабатывают по первому импульсу, в результате кадр получается недоэкспонированным. Решение: либо отключить оценочный импульс в камере или вспышке (если это возможно, например, на камерах Nikon), либо воспользоваться кнопкой «экспопамяти».
Иногда встречаются импульсные источники, которые умеют пропускать первый оценочный импульс и срабатывать по второму, но это редкость, и все моноблоки в студии должны быть оборудованы этой функцией. Именно поэтому способ синхронизации с помощью вспышки камеры является неудобным.
Радиосинхронизация — синхронизация по радиоканалу. Обычно это комплект приемника и передатчика. Приемник включается в синхроразъем источника света, передатчик крепится на камеру, так же как и ИК-пускатель. Плюсы: не «слепнет» на ярком солнце, японские туристы не помешают своими вспышками во время выездной фотосессии.

Экспонометрия при работе с импульсным светом

Экспоавтоматика современных камер не рассчитана на работу со студийным импульсным светом. Определить экспозицию с помощью камеры невозможно! Поэтому студийная фотосъемка проводится исключительно в ручном режиме (M, Manual) камеры.

Чувствительность матрицы

Снимайте с минимальной доступной для вашей камеры чувствительностью, чтобы избежать цифрового шума. Также я настоятельно рекомендую снимать не в JPG, а в RAW.

Нажмите, чтобы увеличить

© phototec

z

Выдержка

Длительность импульса моноблоков чрезвычайно мала. Следовательно, выставляем в камере так называемую выдержку X-синхронизации (обычно 1/200–1/500 сек.). Выдержка синхронизации — минимальная выдержка, при которой полностью открыт затвор. Если поставить выдержку меньшую (более короткую), то вы получите неэкспонированную (черную) часть кадра. Если поставить более длительную выдержку, то это не повлияет на результат, ведь мощность импульсного света по сравнению с естественным светом в студии велика, а длительность импульса мала.
Вывод: при работе с импульсным светом в фотостудии управлять экспозицией с помощью выдержки невозможно. Диафрагма — единственный способ управлять экспозицией при работе с импульсными источниками, за исключением изменения мощности источников света или изменения расстояния от источника до фотомодели.

Определение правильной экспозиции

Мы уже уяснили, что можем влиять на экспозицию диафрагмой и мощностью моноблоков, но как определить верную экспозицию? Рассмотрим два варианта.
Для определения правильной экспозиции (правильной диафрагмы) существует прибор флеш-метр. По сути, это экспонометр, который, в отличие от встроенного в камеру, умеет работать с импульсным светом. Для использования флеш-метра достаточно прочитать несложную инструкцию.

Нажмите, чтобы увеличить

Флеш-метр Seconik © jeremiahkellogg

Нажмите, чтобы увеличить

© bagaak

z

  • Гистограмма яркости
Если же флеш-метра нет, не стоит отчаиваться. В цифровой камере есть возможность отобразить гистограмму полученного кадра. Гистограмма яркости — это график распределения полутонов изображения, в котором по горизонтальной оси представлена яркость (полутоновые градации от черного цвета слева до белого цвета справа), а по вертикали — относительное число точек с данным значением яркости (чем выше столбец, тем больше точек).
Изучив гистограмму, мы можем получить общее представление о правильности экспозиции (определить передержку и недодержку) и оценить требуемое изменение экспозиции. При съемке нужно всего лишь стремиться, чтобы гистограмма не упиралась в верхний край, что означает «недодержку» (левая часть) или «передержку» (правая часть), и по возможности следить за равномерностью распределения гистограммы по горизонтали (зависит от специфики конкретного кадра).
Игорь Алексеев

prophotos.ru



Качественная и недорогая полировка вашего автомобиля в кротчайшие сроки. Доведите ваше авто до ума и сделайте его красивым.

photo-tochka.livejournal.com

Чем отличается импульсный студийный свет от постоянного?

Студийный свет

Успех любой фотосессии на 80% зависит от качества света, который использует фотограф. При помощи хорошего света можно создавать настоящие шедевры. Далекий лес и поле в мягких и нежных лучах заката или яркий солнечный день в городском парке, женский портрет в неярких тонах или мужской с интенсивным освещением. Каждый профессионал должен уметь работать со всеми видами освещения, и первое, что должен сделать начинающий фотограф после приобретения фотоаппарата – это выбрать качественные источники света, которые будут универсальными в отношении всех требований, предъявляемых к освещению. Попробуем разобраться в том, какими преимуществами и недостатками обладают импульсные и постоянные источники света.

Постоянные источники света

Дневное освещение или излучение от светодиодов на вашем фонарике – это постоянные источники света. Они предоставляют освещение в любой момент, который будет удобен фотографу, достаточно лишь включить устройство. У таких приборов есть свои особенности, которые следует учитывать при съемке.

К преимуществам постоянных источников света можно отнести:

  • Возможность более качественного создания экспозиции перед самой съемкой. Фотограф самостоятельно перемещает свет, чтобы создать все необходимые оттенки на снимке;
  • Экономия времени. При использовании управляемого постоянного света можно создать экспозицию и запечатлеть ее одним-двумя снимками для получения шедевра;
  • Можно не ограничивать выдержку. Вы можете использовать как длинную, так и короткую выдержку фотоаппарата, так как освещение имеет статичный характер;
  • Не нужно каждый раз перед съемкой менять программы фотоаппарата. Один раз приспособившись к условиям освещения, можно создавать почти неограниченное количество снимков одинакового качества.

Однако недостатки также имеют место быть. Искусственные постоянные источники света потребляют больше электроэнергии, чем импульсные, а также выделяют значительно больше тепла, создавая дискомфорт в закрытом помещении. Если вы используете естественный постоянный источник света – будьте готовы к постепенным изменениям его характеристик. Сумерки и яркое солнце – совершенно различные режимы, которые требуют разного подхода к съемке. На качество снимков будет сильно влиять облачная погода, когда солнце то появляется из-за туч, то скрывается за ними. Иногда для фотосессии вам придется ждать особенных погодных условий (яркое солнце, туман, дождь, сумерки, ночь). Это условия, которые не создаются по вашему желанию.

Импульсные источники света

Такое освещение может быть только искусственным. Чтобы понять, что значит импульсный источник света, достаточно представить себе вспышку фотоаппарата.

Преимущества импульсных источников света:

  • Мобильность. Такие источники света бывают встроенными в фотоаппарат, накамерными, а также внешними, работающими при помощи синхронизатора (например, студийный свет). Такое разнообразие вариантов значит, что вы будете всегда иметь с собой освещение, подходящее под ситуацию;
  • Регулировка. Вы можете задать все необходимые характеристики в любой удобный для вас момент;
  • Искусственные импульсные источники света потребляют меньше электроэнергии, чем постоянные аналоги. Закрытое помещение нагревается значительно медленнее.

К недостаткам импульсных источников света можно отнести ограничение по выдержке. Нельзя выставить выдержку короче, чем время синхронизации фотоаппарата со вспышкой (как правило, не короче 1/200). Приходится делать несколько снимков для того, чтобы приспособиться к экспозиции, так как теневой рисунок не видно. Такие источники света не всегда срабатывают, а это значит, что из-за ошибки техники вы можете потерять удачный кадр.

pavelpro.art

Rotolight – постоянный и импульсный свет «в одном флаконе»

Время от времени все фотографы используют дополнительные источники света при фотографировании. Это и накамерные вспышки, и мощные студийные моноблоки, и люминесцентные или галогенные лампы…

Все эти приборы можно разделить на две группы – источники постоянного света и источники импульсного света. У каждой из них есть свои плюсы и минусы, о которых фотографы прекрасно осведомлены.

Недавно у меня в руках побывали очень интересные приборы Rotolight, которые в определенной степени объединяют плюсы и импульсного и постоянного света.

Что такое Rotolight? Это компактный, но мощный источник, включающий в себя светодиоды теплого и холодного света. У Ротолайта есть несколько моделей, из которых я использовал две, — AEOS и NEO2.

Rotolight NEO 2 Rotolight NEO 2

Я приведу только основные технические характеристики приборов, а более подробную информацию можно легко найти в интернете.

Технические характеристики AEOS NEO2
Мощность (люкс макс.) 1 метр 5750 2000
CRI 96
Цветовая температура (К) 3150-6300
Аккумулятор (на максимальной мощности) 3 часа (непрерывно) или
150 000импульсов
2 часа (непрерывно) или 85 000 импульсов
Диаметр 295 мм 145 мм
Вес 1,4 кг (без аккумуляторов) 0,354 (без аккумуляторов)
Цена 79000 31500

Что для нас важно при использовании искусственного света? Конечно, мощность и правильность цветопередачи при съемке. С мощностью, как можно видеть, все в порядке, она достаточна для локального освещения.

Таинственный индекс CRI знаком, вероятно, только видеографам, и он требует объяснений. CRI (colour rendering index) это параметр, показывающий, насколько цвет объекта, освещенного данным источником света, отличается от цвета при освещении эталонным источником. Многие фотографы и видеографы замечали, вероятно, что при освещении объекта разными приборами с одинаковой цветовой температурой не все цвета получаются одинаковыми и правильными. Так что CRI это важный показатель точности цветопередачи всего диапазона цветов, и именно он показывает качественную разницу между no-name приборами и фирменными изделиями. Если у вас прибор с CRI больше 90, значит, у вас хороший свет. Хотя, многие производители скромно умалчивают об этом показателе, ограничиваясь указанием цветовой температуры.

AEOS отличается от NEO2 мощностью, размерами и наличием дополнительных опций – USB порт позволяет сделать апдейт прошивки, а коннектор DMX (Digital Multiplex) делает возможным подключение при видеосъемке нескольких приборов для удаленного управления. Какой-то еще разницы я не нашел, так что буду говорить о моих впечатления об AEOS, имея в виду оба прибора.

Rotolight AEOS Rotolight AEOS

Должен сказать, что этот прибор относится к тем, которыми сложно управлять, не прочитав инструкцию. Моя попытка снимать на интуиции успехом не увенчалась, — слишком много возможностей таит в себе прибор. «На поверхности» — только две понятные кнопки – яркость и цветовая температура. Все остальные возможности – в меню, в которое можно войти, нажав обе кнопки и листая пункты.

Структура меню приборов Rotolight

Спектрометра в моем арсенале нет, но правильность цветовой температуры проверить хотелось. Для этого я ставил одинаковую цветовую температуру в камере и в приборе и снимал несколько кадров, начиная от 3200 и до 6300. К моему удивлению (я же скептик), кадры получились совершенно идентичными и правильными по цветопередаче. То есть, цветовая температура AEOS’а соответствует установленной, что важно, а иногда очень важно (при съемке репродукций, еды…). Я поневоле вспомнил о дешевых светодиодных источниках, которые у меня есть, — у них отклонение по цвету составляет 200-300 градусов…

Rotolight– постоянный и импульсный свет «в одном флаконе»© Влад Шутов

О мощности и цветовой температуре. Если Ротолайт установлен на полную мощность, и вы повышаете или понижаете температуру относительно середины (4400К), то падение мощности при установке самого теплого или холодного цвета составляет примерно 1 ступень экспозиции.

Rotolight– постоянный и импульсный свет «в одном флаконе»© Влад Шутов

При съемке людей мощный постоянный свет слепит моделей, и это является проблемой, — люди щурятся, глаза краснеют… И тут на помощь приходит очень интересная способность Ротолайта быть не только постоянным, но и импульсным светом, мощность которого тоже регулируется. Здесь важно сделать оговорку, — Ротолайт не стоит сравнивать со студийными моноблоками на 500-1000 джоулей. Этот прибор, конечно же, не дает такую мощность вспышки. В режиме импульсного света Ротолайт добавляет примерно 2 ступени экспозиции относительно максимальной мощности режима постоянного света. При съемке в режиме импульсного света необходим либо трансмиттер Elinchrom, который позволяет менять настройки источника либо Phottix Odin II, PocketWizard Flex TT 5, Cactus VIII.

Rotolight– постоянный и импульсный свет «в одном флаконе»© Влад Шутов

Режим импульсного света предоставляет очень полезные возможности, среди которых работа прибора в режиме HSS, при котором выдержка может быть установлена вплоть до 1/8000 сек. Понятно, что при этом эффективная мощность снижается. Особая фишка, которая мне очень понравилась, это возможность снимать серию. Прибор в режиме импульса не требует перезарядки. И я снимал со скоростью 10 кадров в секунду, — такую опцию предоставляют только несколько новых моделей студийных источников с несопоставимой ценой… И опять я видел стабильную цветовую температуру, что порадовало.

Rotolight– постоянный и импульсный свет «в одном флаконе»© Влад Шутов

Если говорить об общих характеристиках света, который дает Ротолайт, то они схожи с небольшой портретной тарелкой – плотный равномерный свет с углом рассеивания около 50 градусов.

Ротолайт в видеосъемке. Возможно, видеографам Ротолайт понравится еще больше из-за широкого спектра творческих настроек.

  • Fadeup/ fadedown – эффект затухания или появления изображения, получаемый непосредственно во время съемки.
  • Lightning – настраиваемые эффекты света, по сути это эффект стробоскопа (от 1 до 50 герц), при котором свет прибора становится мерцающим, но между вспышками не гаснет, а ослабляется.
  • Strobe effect – собственно стробоскоп
  • Colour Cycle – пульсирующий свет, при котором цвет меняется от теплого к холодному и наоборот
  • Fire – симуляция света от костра, камина

Все эти эффекты могут настраиваться в соответствии с желаниями видеографа.

Общие впечатления от приборов Rotolight у меня сложились очень хорошие. Кроме разнообразных, иногда уникальных функций, понравилась и конструкция, — нигде ничего не скрипит, не люфтит, материалы, из которых сделаны приборы, выглядят солидными и крепкими.

Rotolight– постоянный и импульсный свет «в одном флаконе»© Влад Шутов

Приборы «всеядны» — можно использовать аккумуляторы, можно подсоединить их к сети, а можно и автомобильный аккумулятор использовать.

Эти приборы еще раз подтверждают, что будущее – за светодиодами и в фотографии, и в видеографии.

Полный каталог светодиодных приборов Rotolight доступен на сайте интернет-магазина  А-Фото.

Автор: Фотографи Влад Шутов — vladshutov.com / facebook.com/vlad.shutov

comments powered by HyperComments

photar.ru

admin

Отправить ответ

avatar
  Подписаться  
Уведомление о