Какой бывает свет – Каким бывает СВЕТ — Карта слов и выражений русского языка

Содержание

Каким бывает СВЕТ СОЛНЦА — Карта слов и выражений русского языка

Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380—400 нм (750—790 ТГц), а в качестве длинноволновой границы — участок 760—780 нм (385—395 ТГц).

Все значения слова «свет»

Со́лнце (астр. ☉) — единственная звезда Солнечной системы. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.

Все значения слова «солнце»
  • Те глаза различат искры космических лучей, которые грубое зрение назовёт просто светом солнца.

  • Сегодня эта деревня озарилась не только светом солнца, но и светом неземного блаженства, или ананды.

  • Но это верно в таком же смысле, в каком свет солнца есть часть солнца, лучи электрического света — часть этого света, тепловые лучи, идущие от печи — часть тепла самой печи, аромат цветка — часть самого цветка.

(все предложения)

kartaslov.ru

Каким бывает СВЕТ ЛУНЫ — Карта слов и выражений русского языка

Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380—400 нм (750—790 ТГц), а в качестве длинноволновой границы — участок 760—780 нм (385—395 ТГц).

Все значения слова «свет»

Луна́ — естественный спутник Земли. Самый близкий к Солнцу спутник планеты, так как у ближайших к Солнцу планет, Меркурия и Венеры, спутников нет. Второй по яркости объект на земном небосводе после Солнца и пятый по величине естественный спутник планеты Солнечной системы. Среднее расстояние между центрами Земли и Луны — 384 467 км (0,002 57 а. е., ~ 30 диаметров Земли).

Все значения слова «луна»
  • Особым разнообразием окрестности не баловали. Деревья справа и слева в три ряда закрывали дорогу от пустыни, которая в свете луны уходила до самого горизонта.

  • Одинокие снежинки срывались с неба, таяли в белых клубах дыхания, едва различимого в свете луны.

  • Сцена погружена в полумрак и освещается мелькающим светом жёлтых фонарей, создающим впечатление

    света луны, выглядывающей из-за бегущих облаков.

(все предложения)

kartaslov.ru

Каким бывает СВЕТ ЛЮСТРЫ — Карта слов и выражений русского языка

Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380—400 нм (750—790 ТГц), а в качестве длинноволновой границы — участок 760—780 нм (385—395 ТГц).

Все значения слова «свет»

Лю́стра (фр. lustre) — подвесной потолочный светильник, предназначенный для создания бестеневого освещения (в отличие от точечного источника) помещений. Размеры люстры (расстояние между отдельными точечными источниками) и количество точечных источников света в ней определяют равномерность освещения помещения. Изначально в качестве источника света использовались свечи, сегодня чаще всего можно встретить лампы накаливания, люминесцентные лампы и светодиодные лампы.

Все значения слова «люстра»
  • Ничего не видно, как в тёмном коридоре без окон, света люстр и ламп.

  • В его глаза лишь отражался белый свет люстры, висевшей на потолке в центре зала.

  • Он отливал в свете люстры приятным серебристым светом, а на цепочке не были видны звенья, будто это толстая нитка.

(все предложения)

kartaslov.ru

Свет — Википедия

Спектр света — часть спектра электромагнитного излучения

Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380—400 нм (750—790 ТГц), а в качестве длинноволновой границы — участок 760—780 нм (385—395 ТГц)

[1].

В широком смысле, используемом вне физической оптики, светом часто называют любое оптическое излучение[2], то есть такое электромагнитное излучение, длины волн которого лежат в диапазоне с приблизительными границами от единиц нанометров до десятых долей миллиметра[3]. В этом случае в понятие «свет» помимо видимого излучения включаются как инфракрасное, так и ультрафиолетовое излучения.

Раздел физики, в котором изучается свет, носит название оптика.

Также, особенно в теоретической физике, термин свет может иногда выступать просто синонимом термина электромагнитное излучение, независимо от его частоты, особенно когда конкретизация не важна, а хотят, например, использовать более короткое слово.

Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой (или, как говорили ранее, нулевой

массой покоя).

Одной из субъективных характеристик света, воспринимаемой человеком в виде осознанного зрительного ощущения, является его цвет, который для монохроматического излучения определяется главным образом частотой света, а для сложного излучения — его спектральным составом.

Свет может распространяться даже в отсутствие вещества, то есть в вакууме. При этом наличие вещества влияет на скорость распространения света.

Скорость света в вакууме равна 299 792 458 м/с точно.

Свет на границе между средами испытывает преломление и/или отражение. Распространяясь в среде, свет поглощается и рассеивается веществом. Оптические свойства среды характеризуются показателем преломления, действительная часть которого равна отношению фазовой скорости света в вакууме к фазовой скорости света в данной среде, мнимая часть описывает поглощение света. В изотропных средах, где распространение света не зависит от направления, показатель преломления есть скалярная функция (в общем случае — от времени и координаты). В анизотропных средах он представляется в виде тензора. Зависимость показателя преломления от длины волны света — оптическая дисперсия — приводит к тому, что свет разных длин волн распространяется в среде с разной скоростью, благодаря чему возможно разложение немонохроматического света (например, белого) в спектр.

Как любая электромагнитная волна, свет может быть поляризованным. У линейно поляризованного света определена плоскость (т. н. плоскость поляризации), в которой происходят колебания электрической составляющей электромагнитной волны. У эллиптически (в частности циркулярно) поляризованного света электрический вектор, в зависимости от направления поляризации, «вращается» по или против часовой стрелки.

Неполяризованный свет является смесью световых волн со случайной поляризацией. Поляризованный свет может быть выделен из неполяризованного пропусканием через поляризатор или отражением/прохождением на границе раздела сред при падении на границу под определённым углом, зависящим от показателей преломления сред (см. угол Брюстера). Некоторые среды могут вращать плоскость поляризации проходящего света, причём угол поворота зависит от концентрации оптически активного вещества, — это явление используется, в частности, в поляриметрическом анализе веществ (например, для измерения концентрации сахара в растворе).

Количественно интенсивность света характеризуют с помощью фотометрических величин нескольких видов. К основным из них относятся энергетические и световые величины. Первые из них характеризуют свет безотносительно к свойствам человеческого зрения. Они выражаются в единицах энергии или мощности, а также производных от них. К энергетическим величинам в частности относятся энергия излучения, поток излучения, сила излучения, энергетическая яркость, энергетическая светимость и облучённость.

Каждой энергетической величине соответствует аналог — световая фотометрическая величина. Световые величины отличаются от энергетических тем, что оценивают свет по его способности вызывать у человека зрительные ощущения. Световыми аналогами перечисленных выше энергетических величин являются световая энергия, световой поток, сила света, яркость, светимость и освещённость.

Учёт световыми величинами зависимости зрительных ощущений от длины волны света приводит к тому, что при одних и тех же значениях, например, энергии, перенесённой зелёным и фиолетовым светом, световая энергия, перенесённая в первом случае, будет существенно выше, чем во втором. Такой результат отражает тот факт, что чувствительность человеческого глаза к зелёному свету выше, чем к фиолетовому.

Видимый свет — электромагнитное излучение с длинами волн ≈ 380—760 нм (от фиолетового до красного) включительно.

Скорость света в вакууме определяется в точности 299 792 458 м/с (около 300 000 км в секунду). Фиксированное значение скорости света в СИ связано с тем, что метр, как единица длины в СИ с 1983 года определяется как расстояние, проходимое светом за 1/299 792 458 часть секунды[4]. Все виды электромагнитного излучения, как полагают, распространяются в вакууме с точно такой же скоростью.

Различные физики пытались измерить скорость света на протяжении всей истории. Галилей безуспешно пытался измерить скорость света в 1607 году. Другой эксперимент по измерению скорости света был проведён в 1676 году датским физиком Оле Рёмером. С помощью телескопа Рёмер наблюдал движение Юпитера и одной из его лун Ио, фиксируя при этом моменты затмений Ио. Рёмер обнаружил, что эти моменты зависят от положения Земли на её орбите. Предположив, что такая зависимость обусловлена конечностью скорости света, он вычислил, что свету требуется около 22 минут, чтобы пройти расстояние, равное диаметру орбиты Земли[5]. Тем не менее, его размер не был известен в то время. Если бы Рёмер знал диаметр орбиты Земли, он бы получил значение скорости, равное 227 000 000 м/с.

Другой — более точный — способ измерения скорости света применил француз Ипполит Физо в 1849 году. Физо направил луч света в зеркало на расстоянии нескольких километров. Вращающееся зубчатое колесо было помещено на пути светового луча, который проходил от источника к зеркалу и затем возвращался к своему источнику. Физо обнаружил, что при определённой скорости вращения луч будет проходить через один пробел в колесе на пути и следующий разрыв на обратном пути. Зная расстояние до зеркала, число зубьев на колесе, и скорость вращения, Физо удалось вычислить скорость света, — было получено значение в 313 000 000 м/с.

Существенного прогресса в измерении скорости света удалось достигнуть в результате применения и совершенствования метода вращающегося зеркала, предложенного другим французом — Франсуа Араго (1838 г.). Развив и осуществив идею Араго, Леон Фуко в 1862 году получил значение скорости света равное 298 000 000±500 000) м/с. В 1891 году Саймон Ньюком, повысив точность измерений на порядок, получил величину в 299 810 000±50 000 м/с. В результате многолетних усилий Альберт А. Майкельсон добился ещё более высокой точности: полученное им в 1926 году значение составило 299 796 000±4 000 м/с. В ходе этих измерений А. Майкельсон измерял время, требовавшееся свету, чтобы пройти расстояние между вершинами двух гор, равное 35,4 км (точнее, 35 373,21 м)[6].

Наивысшая точность измерений была достигнута в начале 1970-х. В 1975 году XV Генеральная конференция по мерам и весам зафиксировала это положение и рекомендовала считать скорость света, равной 299 792 458 м/с с относительной погрешностью 4•10−9, что соответствует абсолютной погрешности 1,1 м/с[7]. Впоследствии это значение скорости света было положено в основу определения метра в Международной системе единиц (СИ), а сама скорость света стала рассматриваться как фундаментальная физическая постоянная, по определению равная указанному значению точно.

Эффективная скорость света в различных прозрачных веществах, содержащих обычную материю, меньше, чем в вакууме. Например, скорость света в воде составляет около 3/4 от скорости света в вакууме. Снижение скорости света при прохождении вещества, как полагают, происходит не от фактического замедления фотонов, а от их поглощения и переизлучения частицами вещества.

Как крайний пример замедления света, можно сказать, что двум независимым группам физиков удалось полностью «остановить» свет, пропуская его через конденсат Бозе-Эйнштейна на основе рубидия,[8] Тем не менее слово «остановить» в этих экспериментах относится только к свету, хранящемуся в возбуждённых состояниях атомов, а затем повторно излучаемому в произвольное более позднее время, как вынужденное вторым лазерным импульсом излучение. Во времена, когда свет «остановился», он перестал быть светом.

Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с

Изучение света и взаимодействия света и материи называют оптикой. Наблюдение и изучение оптических явлений, таких как радуга и северное сияние позволяют пролить свет на природу света.

Преломление[править | править код]

Пример преломления света. Соломка кажется изогнутой из-за преломления света на границе между жидкостью и воздухом

Преломлением света называется изменение направления распространения света (световых лучей) при прохождении через границу раздела двух различных прозрачных сред. Оно описывается законом Снеллиуса:

n1sin⁡θ1=n2sin⁡θ2{\displaystyle n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}}

где θ1{\displaystyle \theta _{1}} — угол между лучом и нормалью к поверхности в первой среде, θ2{\displaystyle \theta _{2}} — угол между лучом и нормалью к поверхности во второй среде, а n1{\displaystyle n_{1}} и n2{\displaystyle n_{2}} — показатели преломления первой и второй среды соответственно. При этом n=1{\displaystyle n=1} для вакуума и n>1{\displaystyle n>1} в случае прозрачных сред.

Когда луч света пересекает границу между вакуумом и другой средой, или между двумя различными средами, длина волны света изменяется, но частота остается неизменной. Если свет падает на границу не перпендикулярно ей, то изменение длины волны приводит к изменению направления его распространения. Такое изменение направления и является преломлением света.

Преломление света линзами часто используется для такого управления светом, при котором изменяется видимый размер изображения, как, например, в лупах, очках, контактных линзах, микроскопах и телескопах.

Свет создаётся во многих физических процессах, в которых участвуют заряженные частицы. Наиболее важным является тепловое излучение, имеющее непрерывный спектр с максимумом, положение которого определяется температурой источника. В частности, излучение Солнца близко к тепловому излучению абсолютно чёрного тела, нагретого до примерно 6000 К, причём около 40 % солнечного излучения лежит в видимом диапазоне, а максимум распределения мощности по спектру находится вблизи 550 нм (зелёный цвет). Другие процессы, являющиеся источниками света:

В прикладных науках важна точная характеристика спектра источника света. Особенно важны следующие типы источников:

Указанные источники имеют разную цветовую температуру.

Лампы дневного света, выпускаемые промышленностью, испускают излучение с различным спектральным составом, в том числе:

Спектральные зависимости относительной чувствительности человеческого глаза для дневного (красная линия) и ночного (синяя линия) зрения

К одним из наиболее важных и востребованных наукой и практикой характеристик света, как и любого другого физического объекта, относятся энергетические характеристики. Измерением и изучением такого рода характеристик, выраженных в энергетических фотометрических величинах, занимается раздел фотометрии, называемый «радиометрия оптического излучения»[9]. Таким образом, радиометрия изучает свет безотносительно к свойствам человеческого зрения.

С другой стороны, свет играет особую роль в жизни человека, поставляя ему бо́льшую часть необходимой для жизни информации об окружающем мире. Происходит это благодаря наличию у человека органов зрения — глаз. Отсюда вытекает необходимость измерения таких характеристик света, по которым можно было бы судить о его способности возбуждать зрительные ощущения. Упомянутые характеристики выражают в световых фотометрических величинах, а их измерения и исследования составляет предмет занятий другого раздела фотометрии — «световые измерения»[9].

В качестве единиц измерения световых величин используются особые световые единицы, они базируются на единице силы света «кандела», являющейся одной из семи основных единиц Международной системы единиц (СИ).

Световые и энергетические величины связаны друг с другом с помощью относительной спектральной световой эффективности монохроматического излучения для дневного зрения V(λ){\displaystyle V(\lambda )}[10], имеющей смысл относительной спектральной чувствительности среднего человеческого глаза, адаптированного к дневному зрению. Для монохроматического излучения с длиной волны λ{\displaystyle \lambda }, соотношение, связывающее произвольную световую величину Xv(λ){\displaystyle X_{v}(\lambda )} с соответствующей ей энергетической величиной Xe(λ){\displaystyle X_{e}(\lambda )}, в СИ записывается в виде:

Xv(λ)=683⋅Xe(λ)V(λ).{\displaystyle X_{v}(\lambda )=683\cdot X_{e}(\lambda )V(\lambda ).}

В общем случае, когда ограничений на распределение энергии излучения по спектру не накладывается, это соотношение приобретает вид:

Xv=683⋅∫380 nm780 nmXe,λ(λ)V(λ)dλ,{\displaystyle X_{v}=683\cdot \int \limits _{380~nm}^{780~nm}X_{e,\lambda }(\lambda )V(\lambda )d\lambda ,}

где Xe,λ(λ){\displaystyle X_{e,\lambda }(\lambda )} — спектральная плотность энергетической величины Xe{\displaystyle X_{e}}, определяемая как отношение величины dXe(λ){\displaystyle dX_{e}(\lambda )}, приходящейся на малый спектральный интервал, заключённый между λ{\displaystyle \lambda } и λ+dλ{\displaystyle \lambda +d\lambda }, к ширине этого интервала. Связь световой величины, характеризующей излучение, с соответствующей ей энергетической величиной, выражают также, используя понятие световая эффективность излучения.

Световые величины относятся к классу редуцированных фотометрических величин, к которому принадлежат и другие системы фотометрических величин. Однако, только световые величины узаконены в рамках СИ и только для них в СИ определены специальные единицы измерений.

Свет оказывает физическое давление на объекты на своём пути — явление, которое не может быть выведено из уравнений Максвелла, но может быть легко объяснено в корпускулярной теории, когда фотоны соударяются с преградой и передают свой импульс. Давление света равно мощности светового пучка, поделённой на с, скорость света. Из-за величины с, эффект светового давления является незначительным для повседневных объектов. Например, одномилливатная лазерная указка создаёт давление около 3,3 пН. Объект, освещённый таким образом, можно было бы поднять, правда для монеты в 1 пенни на это потребуется около 30 млрд 1-мВт лазерных указок.[11] Тем не менее, в нанометровом масштабе эффект светового давления является более значимым, и использование светового давления для управления механизмами и переключения нанометровых коммутаторов в интегральных схемах является активной областью исследований.[12]

При больших масштабах световое давление может заставить астероиды вращаться быстрее[13], действуя на их неправильные формы, как на лопасти ветряной мельницы. Возможность сделать солнечные паруса, которые бы ускорили движение космических кораблей в пространстве, также исследуется.[14][15]

История теорий света в хронологическом порядке[править | править код]

Античные Греция и Рим[править | править код]

В V веке до н. э., Эмпедокл предположил, что всё в мире состоит из четырёх элементов: огня, воздуха, земли и воды. Он считал, что из этих четырёх элементов, богиня Афродита создала человеческий глаз, и зажгла в нём огонь, свечение которого и делало зрение возможным. Для объяснения факта, что тёмной ночью человек видит не так хорошо, как днём, Эмпедокл постулировал взаимодействие между лучами, идущими из глаз и лучами от светящихся источников, таких, как солнце.

Примерно в 300 году до н. э. Евклидом был написан труд «Оптика», дошедший до наших дней, в котором он исследовал свойства света. Евклид утверждал, что свет распространяется по прямой линии, он изучал законы отражения света и описал их математически. Он выразил сомнение в том, что зрение является следствием исхождения луча из глаза, задаваясь вопросом: как человек, открыв в ночное время глаза, устремлённые в небо, может моментально увидеть звёзды. Проблема решалась только, если скорость луча света, исходящего из человеческого глаза, была бесконечно большой.

В 55 году до н. э. римский писатель Лукреций, продолживший идеи ранних греческих философов-атомистов, в своём сочинении «О природе вещей» писал, что свет и тепло солнца состоят из мельчайших движущихся частиц. Однако общего признания взгляды Лукреция на природу света не получили.

Птолемей (около II века) в своей книге «Оптика» описал преломление света.

ru.wikipedia.org

Виды источников света

В этом уроке, на практических примерах, мы рассмотрим виды источников света, применяемых при съемке портретов. Начнем с одного источника и будем постепенно добавлять другие.

Первый, самый главный – это источник рисующего света. Бывает, что для съемки портрета достаточно его одного. Есть даже целое направление в фотографии, приверженцы которого снимают только с одним источником, мотивируя это тем, что «солнце у нас одно». Утверждение бесспорно, конечно, но все же в реальности мы имеем дело более чем с одним источником света. Ведь всевозможные отражения также можно рассматривать как источники! А если взять съемку в помещении? Искусственный свет плюс свет, льющийся из окон – это уже множество источников!

И, тем не менее, главный источник, определяющий всю картину, всегда один, остальные являются вспомогательными и служат для коррекции и акцентов.

В качестве источника рисующего света будем использовать софтбокс 80х120 см. Установим его немного сбоку и сверху

В результате мы получим вот такой портрет.

 Как видим, тени получились достаточно глубокие. Для смягчения теней добавим еще один источник, разместив его фронтально, ближе к камере. В качестве светоформирующей насадки также используем софтбокс. Этот источник называется заполняющим.  Как правило, используют насадки, смягчающие свет.

Варьируя мощность источника заполняющего света, можно получить тени различной глубины, от практически черных до едва уловимых.

Для того, чтобы подчеркнуть форму, контур, а также визуально отделить объект съемки от фона, используют источник света, направленный сбоку и сзади. Такой свет называют моделирующим или модуляцией. Свет, направленный точно сзади, называется контровым, это частный случай моделирующего освещения. Особенно хорошо эффект моделирующей подсветки проявляется при съемке на темном фоне. Мощность моделирующего света обычно ниже, чем рисующего. Источник моделирующего света может быть как жестким так и мягким.

И, наконец, для подсветки фона также используют источник света. Его так и называют – фоновый свет. Подсветка фона также позволяет «оторвать» от него объект съемки и создать определенное настроение. Для ограничения светового пятна на фоне часто используют различные светоформирующие насадки, дающие пучок разной ширины – соты, снуты, линзы с масками Гобо и другие. В данном случае использованы соты на рефлектор и красный светофильтр.

Как я уже писал выше, далеко не всегда вам могут понадобиться все источники света. Часто достаточно одного-двух.

photo-monster.ru

2. Виды освещения и их характеристика

В зависимости от источника света производственное освещение может быть естественным, искусственным и совмещенным.

Естественное освещение– это освещение помещений дневным светом неба (прямым или отраженным), проникающим через световые проемы в наружных ограждающих конструкциях. Естественное освещение производственных помещений может осуществляться через окна в боковых стенах {боковое), через верхние световые проемы, фонари (верхнее) или обоими способами одновременно (комбинированное освещение). Верхнее и комбинированное естественное освещение имеет то преимущество, что обеспечивает более равномерное освещение помещений, а боковое освещение создает значительную неравномерность в освещении участков, расположенных вблизи и вдали от окон боковых стен.

Искусственное освещениепредназначено для освещения рабочих поверхностей в темное время суток или при недостаточности естественного освещения. Создается оно искусственными источниками света (лампами накаливания или газоразрядными лампами) и подразделяется на рабочее, аварийное, охранное и дежурное. Аварийное освещение разделяется на освещение безопасности и эвакуационное. Искусственное освещение бывает общее и комбинированное.

Общее освещениепредназначено для освещения всего помещения, оно может быть равномерным или локализованным. Общее равномерное освещение создает условия для выполнения работы в любом месте освещаемого пространства. При общем локализованном освещении светильники размещают в соответствии с расположением оборудования, что позволяет создавать большую освещенность на рабочих местах.

Комбинированное освещениесостоит из общего и местного. Его целесообразно устраивать при работах высокой точности, а также при необходимости создания определенного или изменяемого в процессе работы направления света.

Местное освещениепредназначено для освещения только рабочих поверхностей и не создает необходимой освещенности даже на прилегающих к ним площадях. Оно может быть стационарным и переносным. Применение только местного освещения в производственных помещениях не допускается.

Рабочее освещение– освещение, обеспечивающее нормируемые осветительные условия (освещенность) в помещениях и в местах производства работ вне зданий.

Аварийное освещениенужно предусматривать, если отключение рабочего освещения и связанное с этим нарушение обслуживания оборудования может привести к взрыву, пожару, длительному нарушению технологического процесса, нарушению работы электростанций, насосных установок водоснабжения и других подобных объектов. Наименьшая освещенность, создаваемая аварийным освещением, должна составлять 5% освещенности, нормируемой для рабочего освещения, но не менее 2 лк внутри зданий и не менее 1 лк для территории предприятий. Светильники аварийного освещения для продолжения работы присоединяют к независимому источнику питания.

Освещение безопасности– освещение для продолжения работы при аварийном отключении рабочего освещения.

Эвакуационное освещениепредназначено для безопасной эвакуации людей из помещений при аварийном отключении рабочего освещения в местах, опасных для прохода людей, на лестницах. Светильники для эвакуационного освещения присоединяют к сети, независимой от рабочего освещения.

Охранное освещениепредусматривается вдоль границ территории, охраняемых в ночное время; оно должно обеспечивать освещенность 0,5 лк на уровне земли.

Дежурное освещениепредназначено для минимального искусственного освещения для несения дежурств охраны в нерабочее время, совпадающее с темным временем суток.

Для охранного и дежурного освещения помещений выделяют часть светильников рабочего или аварийного освещения.

В процессе эксплуатации осветительных установок необходимо предусматривать регулярную очистку от загрязнений светильников и остекленных проемов, своевременную защиту отработавших свой срок службы ламп, контроль напряжений в осветительной сети, систематический ремонт элементов осветительной установки, регулярную окраску стен и потолка, контроль освещенности на рабочих местах.

Контроль состояния осветительных установок, необходимый для поддержания требуемой освещенности на рабочих местах, проводится периодически (но не реже одного раза в год). Проверяется освещенность на рабочих местах с помощью люксметров. Сроки чистки светильников и остекления зависят от запыленности помещения: для помещений с незначительными выделениями пыли – 2 раза в год; для помещений со значительным выделением пыли – от 4 до 12 раз в год. Для удобства и безопасности очистки применяют передвижные тележки, телескопические лестницы, подвесные люльки; при высоте подвеса светильников до 5 м допускается обслуживание их с приставных лестниц и стремянок не менее чем двумя лицами. Чистка светильников должна проводиться при отключенном питании.

studfile.net

Освещение квартиры: разновидности источников света и варианты размещения

Не так давно наши с вами бабушки и дедушки, организуя освещение квартиры, были ограничены потолочными люстрами, настенными и настольными лампами. Сегодня огромное разнообразие осветительных приборов позволяет значительно преобразить жилую площадь. От грамотного и технически верного выбора источников света будет зависеть общая атмосфера в квартире или частном доме.

Одним из наиболее ярких примеров того, как свет в комнате может изменять восприятие окружения, является театральная сцена. При помощи игры теней и света дизайнеры создают совершенно иную атмосферу, при этом оставляя неизменными декорации.

к содержанию ↑

Как правильно организовать освещение

Выбор системы освещения и устанавливаемых приборов должен осуществляться на этапе проектирования жилых комнат. Это очень важное правило, особенно если планируется проведение каких-либо ремонтных работ.

В последнее время при организации искусственного света принято делить разные помещения на несколько функциональных зон. Например, на кухне освещают рабочую зону приготовления пищи, в детской комнате – уголок, где ребенок играет или выполняет домашнее задание.

Освещение включает две основные категории – базовую и местную. К первой относятся различные люстры и прочие изделия, которые поднимают уровень освещенности помещения в целом и используются в ночное время. Местные приборы делятся на те, которые используются для подсветки рабочих зон (пример выше), и те, что необходимы для освещения определенных предметов интерьера. Последние выполняют в большей степени декоративные функции.

Зонирование комнаты при помощи осветительных приборов позволяет одним нажатием клавиши выключателя поменять пропорции помещения.

При построении плана не забывайте о влиянии оттенков света на восприятие. Если зеленый цвет в большей степени успокаивает и позволяет расслабиться, то красный связан с повышенной возбуждаемостью и агрессией.

к содержанию ↑

Нормы мощности и расчет количества светильников

Давно установлены стандарты уровня освещенности для различных помещений, что связано с их функциональным предназначением и особенностями строения. Следует учитывать тот факт, что для человека является небезопасным как чрезмерное, так и недостаточное количество света. В обоих случаях это может привести к ухудшению работы зрительного аппарата, повышенной утомляемости и усталости.

Выбирать осветительные приборы нужно не по уровню мощности. Светодиодная лампа мощностью 10 Вт может излучать столько же света, как обычная с нитью накала на 60 или даже 100 Вт.

В таблице ниже представлены усредненные значения освещенности для комнат жилой квартиры или частного дома:

Название комнатыНорма освещенности (люкс)
Жилые комнаты (спальня) и кухня150
Детская200
Ванная, уборная, коридор, прихожая50
Гардероб75
Рабочий кабинет, комната для чтения300
Лестница между этажами (частные дома)20
Бассейн или баня100

На основе данной информации можно выполнить самостоятельный расчет системы освещения, подсчитать необходимое количество осветительных приборов в зависимости от их типа и вида используемых источников света. К примеру, в среднем в жилую однокомнатную квартиру площадью 30 кв. м принято устанавливать около восьми светильников, включая одну люстру, потолочные, настенные и настольные изделия.

к содержанию ↑

Проверка качества света

Качество света выбранного устройства зависит от многих факторов. К ним можно отнести тип эксплуатируемого источника света и его производителя. Дешевые китайские энергосберегающие лампы характеризуются сильным мерцанием, что негативно скажется на самочувствии находящегося в комнате человека.

Самый простой способ проверить качество света выбранного источника – подать на него питание, взять в руки мобильный телефон, включить фотокамеру и навести ее прямо на лампочку. На дисплее смартфона будут видны различные искажения. Если наблюдаются существенное мерцание и большое количество движущихся световых полос, то качество лампы оставляет желать лучшего.

к содержанию ↑

Цветовая температура

Разделяя помещение на несколько функциональных зон, следует обратить внимание на цветовую температуру выбранных ламп. В зависимости от ее значения, источник характеризуется теплыми желтыми, нежными белыми или холодными голубоватыми оттенками. Им соответствуют диапазоны 0-3299, 3300-4999 и 5000 К и более.

Для жилых помещений идеально подойдут теплые желтые оттенки, максимально приближенные к естественному свету, а во всех остальных могут использоваться источники двух других категорий.

к содержанию ↑

Источники света

Существует огромное количество источников света, каждый из которых характеризуется своими преимуществами и недостатками. Перечислим основные:

  • лампы с нитью накала;
  • светодиодные светильники;
  • люминесцентные;
  • энергосберегающие;
  • оптоволоконные светильники;
  • галогенки.

Выбор источника зависит от конкретной ситуации. К примеру, лампы накаливания дают более мягкие оттенки, но при этом потребляют намного больше электроэнергии, чем все остальные.

к содержанию ↑

Естественный свет

Естественное освещение позволяет понизить энергетические затраты в светлое время суток, украшает комнаты, создает различные эффекты, является полностью безопасным для зрения и оказывает положительное действие на общее самочувствие человека. Уровень естественного освещения зависит от количества окон в комнате и их габаритных размеров.

Искусственное освещение

В данном случае речь идет о многочисленных светильниках, к выбору которых следует подходить с большой осторожностью. Нужно одновременно учитывать несколько факторов, включая безопасность, энергопотребление, визуальное восприятие и т.п.

к содержанию ↑

Виды освещения

Искусственное освещение делится на четыре основные категории:

  • базовое;
  • местное;
  • комбинированное;
  • аварийное.

Последний вариант в меньшей степени используется в частных домах и квартирах, но всегда актуален для комнат, отсутствие света в которых повышает травмоопасность.

Основное предназначение базового освещения (его также называют «общим») – равномерное распределение света по всей площади помещения (гостиной, кухне, спальне). Главным условием достижения такого результата является расположение одинаковых по мощности светильников на равноудаленном расстоянии друг от друга. Можно использовать более яркий источник света, расположенный по центру комнаты (люстру).

Местные осветительные приборы позволяют расставить акценты на определенных объектах, поэтому источник обычно располагают рядом с освещаемым предметом. Наиболее ярким примером такого варианта являются бра, прикрепленные к стене над кроватью, или светильники, стоящие на столе и позволяющие направить свет на газеты или книги.

Комбинированный вариант подразумевает использование и базового, и местного освещения.

к содержанию ↑

Точечные светильники

Это современные осветительные приборы, устанавливаемые или встраиваемые в потолок. В более редких случаях их можно увидеть на полу или стенах. По типу монтажа делятся на накладные и встроенные. Корпус первых выступает за нижний уровень потолка, вторых – погружается в него. Последний вариант применяется для навесных или натяжных потолочных конструкций.

Также точечные изделия делятся на фиксированные и поворотные. Вторые удобны тем, что можно менять направление светового излучения, перемещая акцент с входной двери на тумбу для телевизора и обратно.

При выборе данных устройств обратите внимание на ширину луча. Узконаправленные приборы подходят исключительно для декорирования комнаты.

к содержанию ↑

Неоновые лампы

Данные лампы представляют собой газоразрядные трубки, в которые под низким давлением закачивается неон. Отсюда и название – «неоновые». По умолчанию излучают ярко-оранжевый свет, хотя оттенок может изменяться за счет добавления других инертных газов.

Светодиодные ленты

За последние годы высокую популярность приобрели светодиодные источники. Эти лампы потребляют минимум электроэнергии, эксплуатируются в точечных светильниках, люстрах, торшерах, бра. Еще одним не менее интересным и оригинальным вариантом является светодиодная лента. К гибкой плате припаиваются многочисленные led-диоды, изменяющие цвет излучения за счет RGB-технологии.

Ленту можно крепить на потолке, стенах, полу и предметах мебели, включая встроенные конструкции.

к содержанию ↑

Светодиодный дюралайт

Дюралайт напоминает светодиодную ленту с несколькими существенными отличиями. Конструктивно представляет собой гибкий шнур, в котором находятся светодиоды, защищенные эластичным пластиком. Характеризуется повышенной защитой от пыли и влаги.

к содержанию ↑

Гибкий неон

Если стандартные неоновые лампы представляют собой жесткую стеклянную трубку, то данные изделия схожи со светодиодным дюралайтом. Гибкий прозрачный провод, излучающий свет на основе газоразрядного принципа. Главным достоинством в сравнении со светодиодными лентами является то, что свет в гибком неоне излучается во всех направлениях.

Варианты размещения светильников

В зависимости от выбора мест расположения светильников можно добиться разнообразных визуальных эффектов. Чем ярче свет, тем более габаритным кажется помещение. Поэтому зачастую для отделки стен и потолка используют материалы с высокими светоотражающими свойствами.

Чтобы помещение казалось более высоким, нужно использовать светильники, направленные вверх. Может потребоваться и обратное: к примеру, затемнение определенных частей комнаты.

Добиться многоуровневого зонирования можно за счет применения базового и местного освещения – комбинированного типа.

Ниже приведены советы по организации осветительных систем для различных помещений квартиры или частного дома.

Будьте внимательны: если где-либо не были указаны неоновые лампы или дюралайт, то это не значит, что вы не можете их использовать.

к содержанию ↑

Гостиная (зал)

В большинстве случаев для зала используют либо общий источник света в центре (люстру), либо расположенные равномерно по периметру комнаты точечные светильники. Первый вариант подходит для классического интерьера, второй – более современного.

Спальня

Подходит комбинированная система. Для общего освещения идеальным вариантом будет люстра или ряд торшеров, в то время как приглушенные точечные светильники, установленные по периметру комнаты, дополнят картину и сделают ее более целостной. Местные изделия помогут расставить определенные акценты и декорировать спальню.

Детская

Очень много времени ребенок проводит в собственной комнате, поэтому в данном случае световое оформление играет едва ли не самую главную роль. Нужно обращать внимание на оттенки, мощность, качество света и другие параметры, от которых будут зависеть настроение и психологическое самочувствие ребенка. Декоративная подсветка в квартире окажет положительное воздействие на развитие малыша.

к содержанию ↑

Кухня

Кухня – помещение, которое делится по зонам чаще остальных. При помощи осветительных приборов можно создать несколько функциональных участков, включая столовую, место приготовления пищи и даже уголок для отдыха.

Будет нелишней задействовать возможность изменения уровня освещенности при помощи диммера. Также он предусматривает раздельное включение приборов. Даже если используется одна центральная люстра, сделайте так, чтобы можно было включить в ней как все лампочки, так и одну или две и т.д.

к содержанию ↑

Прихожая

В данную часть квартиры или дома обычно затруднено проникновение естественного освещения, поэтому в идеале нужно установить больше встроенных изделий. Нет никаких строгих правил и рекомендаций – все ограничивается лишь вашей фантазией.

Ванная

Если в коридор и прихожую попадает хоть немного естественного света, то в ванной он полностью отсутствует. Здесь нельзя эксплуатировать локальные светильники с высокой мощностью. Выберите хорошую подсветку, которой будет достаточно для проживающих в квартире людей, но не перебарщивайте с яркостью. Обязательно учитывайте влагозащищенность устройств.

Квартира-студия

Наряду с кухнями, квартиры-студии являются лучшим местом для функционального зонирования при помощи системы освещения. Более того, в данном случае такой подход оптимален, что связано с проблемой нехватки свободного пространства. Помимо визуального увеличения площади, этот вариант позволит добиться логической завершенности жилья. Подойдут базовые, локальные и декоративные элементы освещения, в том числе созданные своими руками.

к содержанию ↑

Освещение потолка

Рассмотрим различные варианты потолочного освещения, для которого чаще всего используют люстры и встраиваемые точечные светильники.

При низких потолках

Помещения с низкими потолками имеют различные недостатки. Главным из них является нерациональность обустройства натяжных и навесных конструкций, установки подвесных люстр и других массивных электроприборов. Отсутствие натяжного потолка приводит к невозможности установки встраиваемых светильников, поэтому придется обратить внимание на накладные устройства, люстры с плоской формой, трековые изделия и светодиодные панели.

к содержанию ↑

Скрытое освещение потолка

Скрытое освещение в комнате зачастую связано с установкой гибкого неона, дюралайта или светодиодных лент. Чтобы спрятать эти изделия, можно создать нишу из гипсокартона или карниз из пенополистирола. К слову, ниша необходима в тех случаях, когда нужно скрыть различные недостатки, связанные с неправильным монтажом потолочной конструкции.

Многоуровневое освещение

Этот подход можно отнести к комбинированной системе освещения, в которой используются приборы четырех основных уровней:

  • верхнего – точечные светильники, люстры, бра;
  • среднего – торшеры;
  • нижнего – местная подсветка;
  • внутреннего – подсветка мебели и т.д.

Современные тенденции систем освещения для квартиры или частного дома сводятся к отсутствию четких границ для светильников. Сегодня ценится оригинальность, уникальность дизайна. Выбирая такой подход для осветительных приборов, вы сможете повысить комфорт проживания, добиться высокой функциональности жилых комнат. Добавьте один-два встроенных светильника в комнату, и существенно преобразится ее интерьер, изменится восприятие вами пространства, а вся картина в целом станет более выразительной и глубокой.

Освещение квартиры: разновидности источников света и варианты размещения

220.guru

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *