Линза схема: Построение изображения предмета в тонкой линзе — урок. Физика, 9 класс.
Построение изображения в линзе | СПАДИЛО
Свойства тонкой линзы определяются главным образом расположением ее главных фокусов. Поэтому, зная расстояние от источника света до линзы, а также ее фокусное расстояние (положение фокусов), мы можем определить расстояние до изображения, опустив описание хода лучей внутри самой линзы. Поэтому в изображении на чертеже точного вида сферических поверхностей линзы необходимость отсутствует.
Схематически тонкие линзы обозначают отрезком со стрелками на конце. Они смотрят от центра в противоположные стороны, если линза собирающая, и они направлены к центру отрезка, если линза рассеивающая.
Внимание!Напомним, что линзы могут давать действительные и мнительные изображения. Причем, собирающая линза может давать как действительные, так и мнимые изображения. Рассеивающая линза всегда дает только мнимые изображения.
Способ построения изображений, а также вид самих изображений в линзе зависит от того, где расположен изображаемый предмет.
Вторым фокусом называют точку, которая расположена на главной оптической оси от главного фокуса на расстоянии, равном фокусному расстоянию линзы. Относительно линзы он располагается на расстоянии, равном двойному фокусному расстоянию линзы.
Построение изображения в собирающей линзе
Предметы схематично изображаются в виде стрелки. Чтобы построить изображение предмета в собирающей линзе, нужно найти положение верхней и нижней точки этого изображения. Сначала находят положение точки изображения, соответствующей верхней точки предмета (точки А). Для этого из этой точки нужно пустить два луча:
Два вида лучей при построении изображений в линзеПервый луч проходит из верхней точки предмета (точки А) параллельно главной оптической оси.
На линзе (в точке С) луч преломляется и проходит через точку фокуса (точку F).
Второй луч необходимо направить из верхней точки предмета (точки А) через оптический центр линзы (точку О). Он пройдет, не преломившись.
На пересечении двух лучей обозначаем точку А1. Это и будет изображение верхней точки предмета. Таким же образом нужно поступить с нижней точкой предмета. Но на пересечении вышедших из линзы лучей нужно поставить точку В1. Изображение предмета при этом — А1 В1.
В зависимости от того, где расположен предмет, изображение может получиться действительным или мнимым, увеличенным или уменьшенным, перевернутым или прямым. Построим изображения для каждого из таких случаев.
| Схема построения изображения | Расположение предмета относительно линзы + характеристика изображение |
Предмет располагается за двойным фокусом. Изображение:
| |
Предмет располагается в фокальной плоскости второго фокуса.
Изображение:
| |
Предмет располагается в пространстве между фокусом и двойным фокусом.
Изображение:
| |
| Предмет находится в фокальной плоскости. Изображения нет, поскольку лучи идут параллельно друг другу и не пересекаются. | |
Предмет располагается между линзой и фокусом.
Изображение:
|
Пример №1. Построить изображение предмета, изображенного на рисунке. Определить тип изображения.
Чтобы построить изображение предмета, достаточно определить его положение одной точки — верхней.
Поскольку предмет расположен параллельно линзе, для построения изображения, достаточно будет соединить найденную точку изображения для верхней точки предмета перпендикуляром, проведенным к главной оптической оси.
Чтобы построить изображение верхней точки, пустим от нее два луча — побочную оптическую ось через оптический центр и перпендикуляр к линзе. Затем найдем пересечение побочной оптической оси с преломленным лучом. Теперь пустим перпендикуляр к главной оптической оси и получим изображение. Оно является действительным, увеличенным и перевернутым.
Частный случай — построение изображения точки
Положение изображения точки можно найти тем же способом, описанным выше. Нужно лишь построить два луча и найти их пересечение после выхода из линзы (см. рисунок ниже). Так, изображению точки S соответствует точка S´.
Особую сложность составляет случай, когда точка расположена на главной оптической оси. Сложность заключается в том, что все лучи, которые можно построить, будут совпадать с главной оптической осью.
Поэтому возникает необходимость в определении хода произвольного луча. Направим луч от точки S (луч SB) к собирающей линзе. Затем построим побочную оптическую ось PQ такую, которая будет параллельна лучу SB. После этого построим фокальную плоскость и найдем точку пересечения (точка С) фокальной плоскости с побочной оптической осью. Теперь соединим полученную точку С с точкой В. Это будет преломленный луч. Продолжим его до пересечения с главной оптической осью. Точка пересечения с ней и будет изображением точки S. В данном случае оно является мнимым.
Пример №2. Построить изображение точки, расположенной на главной оптической оси.
Чтобы построить изображение, пустим произвольный луч к линзе. Затем построим параллельную ему побочную оптическую ось и фокальную плоскость. Из места пересечения этой оси с фокальной плоскостью пустим луч, также проходящий через точку пересечения линзы с произвольным лучом. Построим продолжение луча до получения точки пересечения с главной оптической осью.
Отметим точку пересечения — она является действительным изображением точки.
Построение изображения в рассеивающей линзе
Чтобы построить изображение предмета в рассеивающей линзе, нужно определить положения точек изображения, соответствующих верхней и нижней точкам предмета. Вот как определить положение точки изображения для верхней точки предмета:
- Нужно пустить луч, перпендикулярный главной оптической оси. Этот луч после преломления отклонится. Но его продолжение обязательно пересечет главный фокус линзы.
- Нужно пустить луч от верхней точки предмета через оптический центр линзы (построить побочную оптическую ось).
- Точку пересечения продолжения луча, полученного в шаге 1, с побочной оптической осью, нужно обозначить за изображение верхней точки предмета (на рисунке это точка А´).
Точно такие же действия нужно выполнить для нижней точки предмета. В результате получится точка пересечения, соответствующая изображению нижней точки предмета (на рисунке это точка А´´).
Внимание! Независимо от расположения предмета относительно рассеивающей линзы, изображение всегда получается прямым, уменьшенным, мнимым.
Пример №3. Построить изображение предмета в рассеивающей линзе.
Чтобы построить изображение, пустим от верхней точки предмета побочную оптическую ось через оптический центр и проведем перпендикуляр к линзе. Затем из точки главного фокуса проведем луч через точку пересечения линзы с перпендикуляром. Пересечение этого луча с побочной оптической осью есть изображение верхней точки предмета. Теперь проведем от нее перпендикуляр к главной оптической оси. Это и будет являться изображением предмета. Оно является мнимым, уменьшенным и прямым.
Построение изображений в плоском зеркале
ОпределениеПлоское зеркало — это плоская поверхность, зеркально отражающая свет.
Построение изображения в зеркалах основывается на законах прямолинейного распространения и отражения света.![]()
Построим изображение точечного источника S. От точечного источника света лучи распространяются во все стороны. На зеркало падает пучок света ASB, и изображение создается всем пучком сразу. Но для построения изображения достаточно взять любые два луча из этого пучка. Пусть это будут лучи SO и SC. Луч SO падает перпендикулярно поверхности зеркала АВ. Поскольку угол между ним и перпендикуляром, восстановленным в точке падения, равен 0, то угол падения принимаем равным за 0. поэтому отраженный пойдет в обратном направлении OS. Луч SC отразится под углом γ=α. Отраженные лучи OS и СК расходятся и не пересекаются, но если они попадают в глаз человека, то человек увидит изображение S1, которое представляет собой точку пересечения продолжения отраженных лучей.
Таким образом, чтобы получить изображение в плоском зеркале, нужно:
- Пустить от источника света луч, перпендикулярный к плоскости зеркала (падающий луч совпадает с отраженным лучом).

- Пустить от источника света к плоскости зеркала еще один луч под произвольным углом.
- Построить отраженный луч от падающего луча, построенного в шаге 2, используя закон отражения света.
- Найти пересечение продолжений отраженных от зеркала лучей (пущенного под прямым углом и произвольным углом).
Изображение в зеркале всегда является мнимым. Это связано с тем, что изображение строится на пересечении продолжении лучей, а не на самих лучах.
Изображение в плоском зеркале находится от зеркала на таком же расстоянии, как предмет от этого зеркала. Это легко доказать тем, что треугольники SOC и S
При построении изображения какого-либо предмета последний представляют как совокупность точечных источников света.
Поэтому достаточно найти изображение крайних точек предмета. Так, изображение А1В1 соответствует предмету АВ.
Изображение и сам предмет всегда симметричны относительно зеркала.
Пример №4. Построить изображение треугольника ABC в плоском зеркале.
Чтобы построить изображение, пустим к плоскому зеркалу перпендикулярные прямые. Затем измерим расстояние от каждой точки до зеркала и отложим их по перпендикуляру от зеркала в обратную сторону. Так для точки А мы находим точку А´, для В — В´, для С — С´.
Видно, что треугольник отразился зеркально (изображение и предмет симметричны друг другу). Так и должно быть в случае с зеркалом.
Задание EF17760Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет AC лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A.
Расстояние от центра линзы до точки A равно удвоенному фокусному расстоянию линзы, AC = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.
Алгоритм решения
1.Записать исходные данные и перевести единицы измерения в СИ.
2.Сделать рисунок — построить изображение в линзе.
3.Записать формулу для нахождения площади полученной фигуры.
4.Выполнить решение в общем виде.
5.Подставить известные данные и вычислить искомую величину.
Решение
Запишем исходные данные:
• Оптическая сила линзы: D = 2,5 дптр.
• Сторона треугольника AC = 4 см.
4 см = 0,04 м
Построим изображение в линзе. Для этого достаточно построить изображение точки В. Сначала пустим луч, параллельный главной оптической оси, к плоскости линзы. Он будет преломляться, после чего пройдет через фокус. Затем пустим луч через оптический центр. На месте пересечения двух лучей поставим точку и обозначим ее за B´.
Так как точки B и C предмета лежат на одной прямой, перпендикулярной главной оптической оси, для нахождения точки изображения C´ достаточно пустить перпендикуляр от B´ этой оси. На месте пересечения поставим точку и обозначим ее C´.
Рассматривать ход лучей для построения точки A´ тоже не будем. Точка A лежит в плоскости второго фокуса. Значит, она будет находиться в этой же точке и с противоположной стороны линзы. Это легко доказать с помощью формулы тонкой линзы:
1d..+1f..=1F..
Если расстояние от предмета до линзы равно 2F, то и расстояние от линзы до его изображения будет 2F:
12F..+1f..=1F..
1f..=1F..−12F..=2−12F..=12F..
f=2F
Теперь соединим все найденные точки и получим треугольник A´ B´ C´. Найдем его площадь. Поскольку это прямоугольный треугольник, его площадь будет равна половине произведения двух катетов — B´ C´и A´ C´:
S=A´C´·B´C´2.
.
Из формулы оптической силы линзы найдем фокусное расстояние:
F=1D..=12,5..=0,4 (м)
Известно, что точка A находится в точке двойного фокусного расстояния. И ее изображение тоже находится на таком же расстоянии от линзы. Следовательно, чтобы найти длину катета A´ C´, нужно найти расстояние от точки C до ее изображения. Расстояние от этой точки до линзы равно разности двойного фокусного расстояния и длины отрезка AC:
dC=2F−AC=2·0,4−0,04=0,76 (м)
Используя формулу тонкой линзы, вычислим расстояние от линзы до изображения этой точки:
10,76..+1f..=1F..
1fC..=1F..−10,76..=0,76−F0,76F..=0,76−0,40,76·0,4..
fC=0,76·0,40,76−0,4..=0,844 (м)
Тогда длина катета A´ C´ будет равна:
A´C´=fC−fA=fC−2F=0,844−0,4·2=0,044 (м)
Треугольники BCO и B´ C´O подобны по 3 углам. Углы O равны как вертикальные. Углы C и C´ как прямые, а B и B´ как накрест лежащие (полученные при пересечении секущей в виде луча через оптический центр и параллельных фокальных плоскостей).
Следовательно BC относится к B´ C´ так же, как OC относится к C´O:
BCB´C´..=ACA´C´..
Треугольник ABC равнобедренный, поэтому BC = AС. Тогда:
ACB´C´..=ACA´C´..
Следовательно:
B´C´=A´C´
Отсюда площадь треугольника равна:
S=A´C´·A´C´2..=(0,044)22..=0,000968 (м2)=9,68 (см2)
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF18181Предмет S отражается в плоском зеркале ab. На каком рисунке верно показано изображение S1 этого предмета?
Ответ:
Алгоритм решения
- Записать, какое изображение дает плоское зеркало.
- Выбрать изображение, которое соответствует типу описанного изображения.
Решение
Зеркало дает мнимое изображение предмета без увеличения в зеркальном отражении. Это значит, что предмет и его изображение должны быть симметричны относительно плоскости зеркала.
Симметричными являются только предмет и его изображение на последнем рисунке — Г.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF18876Какая точка является изображением точки S (см. рисунок), создаваемым тонкой собирающей линзой с фокусным расстоянием F?
Алгоритм решения
1.Построить изображение точки.
2.Выбрать верный ответ.
Решение
Построим изображение точки с учетом того, что линза собирающая. Для этого пустим из этой точки луч света, параллельный главной оптической оси. После прохождения через линзу луч преломится и пройдет через фокус. Затем пустим луч от этой точки через оптический центр линзы. Точка, в которой оба луча пересекутся, будет искомой. В данном случае это точка 4.
Ответ: 4pазбирался: Алиса Никитина | обсудить разбор | оценить
Алиса Никитина | Просмотров: 28.
2k
Урок 49. Линзы. Оптические приборы.
Оптические приборы — устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется).
Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете.
При первичной оценке качества прибора рассматриваются лишь основные его характеристики:
- светосила — способность концентрировать излучение;
- разрешающая сила — способность различать соседние детали изображения;
- увеличение — соотношение размеров предмета и его изображения.
- Для многих приборов определяющей характеристикой оказывается поле зрения — угол, под которым из центра прибора видны крайние точки предмета.

Разрешающая сила (способность) — характеризует способность оптических приборов давать раздельные изображения двух близких друг к другу точек объекта.
Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения.
Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.
Увеличение. Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения h, то увеличение m определяется по формуле:
m = h/H.
Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы.
Важной характеристикой приборов для визуального наблюдения является видимое увеличение М. Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tgb /tga, где a — угол, под которым наблюдатель видит предмет невооруженным глазом, а b — угол, под которым глаз наблюдателя видит предмет через прибор.
Основной частью любой оптической системы является линза. Линзы входят в состав практически всех оптических приборов.
Линза – оптически прозрачное тело, ограниченное двумя сферическими поверхностями.
Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой.
Линзы бывают собирающими и рассеивающими. Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше.
Виды линз:
- выпуклые:
- двояковыпуклые (1)
- плосковыпуклые (2)
- вогнуто-выпуклые (3)
- вогнутые:
- двояковогнутые (4)
- плосковогнутые (5)
- выпукло-вогнутые (6)
Основные обозначения в линзе:
Прямая, проходящая через центры кривизны O1 и O2 сферических поверхностей, называется главной оптической осью линзы.
В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления.
Оптический центр линзы – точка, сквозь которую световые лучи проходят не преломляясь в линзе.
Главная оптическая ось – прямая, проходящая через оптический центр линзы, перпендикулярно линзе.
Все прямые, проходящие через оптический центр, называются побочными оптическими осями.
Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F, которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые.
Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F’, которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус.
Фокальная плоскость – прямая, перпендикулярная главной оптической оси линзы и проходящая через фокус линзы.
Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначаетcя той же буквой F.
Преломление параллельного пучка лучей в собирающей линзе.
Преломление параллельного пучка лучей в рассеивающей линзе.
Точки O1 и O2 – центры сферических поверхностей, O1O2 – главная оптическая ось, O – оптический центр, F – главный фокус, F’ – побочный фокус, OF’ – побочная оптическая ось, Ф – фокальная плоскость.
На чертежах тонкие линзы изображают в виде отрезка со стрелками:
собирающая: рассеивающая:
Основное свойство линз – способность давать изображения предметов. Изображения бывают прямыми и перевернутыми, действительными и мнимыми, увеличенными и уменьшенными.
Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Для построения изображения в линзе используют любые два из трех лучей:
-
Луч, падающий на линзу параллельно оптической оси, после преломления идет через фокус линзы.
-
Луч, проходящий через оптический центр линзы не преломляется.
-
Луч, проходя через фокус линзы после преломления идет параллельно оптической оси.
Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы. Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:
Величину D, обратную фокусному расстоянию называют оптической силой линзы.
Единицей измерения оптической силы является диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр = м–1
Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.
Величины d и f также подчиняются определенному правилу знаков:
d > 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
d < 0 и f < 0 – для мнимых источников и изображений.
Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями. Главные из них – сферическая и хроматическая аберрации.
Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе.
Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.
Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.
В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.
Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.
При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик — светосилы, разрешающей способности и увеличения.
Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.
Микроскоп, лупа, увеличительное стекло.
Если рассматривать через положительную (собирающую) линзу предмет, расположенный за линзой не дальше ее фокальной точки, то видно увеличенное мнимое изображение предмета. Такая линза представляет собой простейший микроскоп и называется лупой или увеличительным стеклом.
Из оптической схемы можно определить размер увеличенного изображения.
Когда глаз настроен на параллельный пучок света (изображение предмета находится на неопределенно большом расстоянии, а это означает, что предмет расположен в фокальной плоскости линзы), видимое увеличение M можно определить из соотношения: M = tgb /tga = (H/f)/(H/v) = v/f, где f — фокусное расстояние линзы, v — расстояние наилучшего зрения, т.е. наименьшее расстояние, на котором глаз хорошо видит при нормальной аккомодации. M увеличивается на единицу, когда глаз настраивается так, что мнимое изображение предмета оказывается на расстоянии наилучшего зрения. Способности к аккомодации у всех людей разные, с возрастом они ухудшаются; принято считать 25 см расстоянием наилучшего зрения нормального глаза.
В поле зрения одиночной положительной линзы при удалении от ее оси резкость изображения быстро ухудшается из-за поперечных аберраций. Хотя и бывают лупы с увеличением в 20 крат, типичная их кратность от 5 до 10. Увеличение сложного микроскопа, именуемого обычно просто микроскопом, доходит до 2000 крат.
Телескоп.
Телескоп увеличивает видимые размеры удаленных предметов. В схему простейшего телескопа входят две положительные линзы.
Лучи от удаленного предмета, параллельные оси телескопа (лучи a и c на схеме), собираются в заднем фокусе первой линзы (объектива). Вторая линза (окуляр) удалена от фокальной плоскости объектива на свое фокусное расстояние, и лучи a и c выходят из нее вновь параллельно оси системы. Некоторый луч b, исходящий не из тех точек предмета, откуда пришли лучи a и c, падает под углом a к оси телескопа, проходит через передний фокус объектива и после него идет параллельно оси системы. Окуляр направляет его в свой задний фокус под углом b.
Поскольку расстояние от переднего фокуса объектива до глаза наблюдателя пренебрежимо мало по сравнению с расстоянием до предмета, то из схемы можно получить выражение для видимого увеличения M телескопа: M = -tgb /tga = -F/f’ (или F/f). Отрицательный знак показывает, что изображение перевернуто. В астрономических телескопах оно таким и остается; в телескопах для наблюдений за наземными объектами применяют оборачивающую систему, чтобы рассматривать нормальные, а не перевернутые изображения. В оборачивающую систему могут входить дополнительные линзы или, как в биноклях, призмы.
Бинокль.
Бинокулярный телескоп, обычно именуемый биноклем, представляет собой компактный прибор для наблюдений обоими глазами одновременно; его увеличение, как правило, от 6 до 10 крат. В биноклях используют пару оборачивающих систем (чаще всего — Порро), в каждую из которых входят две прямоугольные призмы (с основанием под 45°), ориентированные навстречу прямоугольными гранями.
Чтобы получить большое увеличение в широком поле зрения, свободном от аберраций объектива, и, следовательно, значительный угол обзора (6-9°), биноклю необходим очень качественный окуляр, более совершенный, чем телескопу с узким углом зрения.
В окуляре бинокля предусмотрена фокусировка изображения, причем с коррекцией зрения, — его шкала размечена в диоптриях. Кроме того, в бинокле положение окуляра подстраивается под расстояние между глазами наблюдателя. Обычно бинокли маркируются в соответствии с их увеличением (в кратах) и диаметром объектива (в миллиметрах), например, 8*40 или 7*50.
Оптический прицел.
В качестве оптического прицела можно применить любой телескоп для наземных наблюдений, если в какой-либо плоскости его пространства изображений нанести четкие метки (сетки, марки), отвечающие заданному назначению. Типичное устройство многих военных оптических установок таково, что объектив телескопа открыто смотрит на цель, а окуляр находится в укрытии. Такая схема требует излома оптической оси прицела и применения призм для ее смещения; эти же призмы преобразуют перевернутое изображение в прямое. Системы со смещением оптической оси называются перископическими. Обычно оптический прицел рассчитывается так, что зрачок его выхода удален от последней поверхности окуляра на достаточное расстояние для предохранения глаза наводчика от ударов о край телескопа при отдаче оружия.![]()
Дальномер.
Оптические дальномеры, с помощью которых измеряют расстояния до объектов, бывают двух типов: монокулярные и стереоскопические. Хотя они различаются конструктивными деталями, основная часть оптической схемы у них одинакова и принцип действия один: по известной стороне (базе) и двум известным углам треугольника определяется неизвестная его сторона. Два параллельно ориентированных телескопа, разнесенных на расстояние b (база), строят изображения одного и того же удаленного объекта так, что он кажется наблюдаемым из них в разных направлениях (базой может служить и размер цели). Если с помощью какого-нибудь приемлемого оптического устройства совместить поля изображений обоих телескопов так, чтобы их можно было рассматривать одновременно, окажется, что соответствующие изображения предмета пространственно разнесены. Существуют дальномеры не только с полным наложением полей, но и с половинным: верхняя половина пространства изображений одного телескопа объединяется с нижней половиной пространства изображений другого.
В таких приборах с помощью подходящего оптического элемента проводится совмещение пространственно разнесенных изображений и по относительному сдвигу изображений определяется измеряемая величина. Часто в качестве сдвигающего элемента служит призма или комбинация призм.
МОНОКУЛЯРНЫЙ ДАЛЬНОМЕР. A — прямоугольная призма; B — пентапризмы; C — линзовые объективы; D — окуляр; E — глаз; P1 и P2 -неподвижные призмы; P3 — подвижная призма; I 1 и I 2 — изображения половин поля зрения
В схеме монокулярного дальномера, показанной на рисунке, эту функцию исполняет призма P3; она связана со шкалой, проградуированной в измеряемых расстояниях до объекта. Пентапризмы B используются как отражатели света под прямым углом, поскольку такие призмы всегда отклоняют падающий световой пучок на 90°, независимо от точности их установки в горизонтальной плоскости прибора. Изображения, создаваемые двумя телескопами, в стереоскопическом дальномере наблюдатель видит сразу обоими глазами. База такого дальномера позволяет наблюдателю воспринимать положение объекта объемно, на некоторой глубине в пространстве.
В каждом телескопе имеется сетка с марками, соответствующими значениям дальности. Наблюдатель видит шкалу расстояний, уходящую в глубь изображаемого пространства, и по ней определяет удаленность объекта.
Осветительные и проекционные приборы. Прожекторы.
В оптической схеме прожектора источник света, например кратер дугового электрического разряда, находится в фокусе параболического отражателя. Лучи, исходящие из всех точек дуги, отражаются параболическим зеркалом почти параллельно друг другу. Пучок лучей немного расходится потому, что источником служит не светящаяся точка, а объем конечного размера.
Диаскоп.
В оптическую схему этого прибора, предназначенного для просмотра диапозитивов и прозрачных цветных кадров, входят две линзовые системы: конденсор и проекционный объектив. Конденсор равномерно освещает прозрачный оригинал, направляя лучи в проекционный объектив, который строит изображение оригинала на экране. В проекционном объективе предусматриваются фокусировка и замена его линз, что позволяет менять расстояние до экрана и размеры изображения на нем.
Оптическая схема кинопроектора такая же.
СХЕМА ДИАСКОПА. A — диапозитив; B — линзовый конденсор; C — линзы проекционного объектива; D — экран; S — источник света
Спектральные приборы.
Основным элементом спектрального прибора может быть дисперсионная призма либо дифракционная решетка. В таком приборе свет сначала коллимируется, т.е. формируется в пучок параллельных лучей, затем разлагается в спектр, и, наконец, изображение входной щели прибора фокусируется на его выходную щель по каждой длине волны спектра.
Спектрометр.
В этом более или менее универсальном лабораторном приборе коллимирующая и фокусирующая системы могут поворачиваться относительно центра столика, на котором расположен элемент, разлагающий свет в спектр. На приборе имеются шкалы для отсчетов углов поворота, например дисперсионной призмы, и углов отклонения после нее разных цветовых составляющих спектра. По результатам таких отсчетов измеряются, например, показатели преломления прозрачных твердых тел.
Спектрограф.
Так называется прибор, в котором полученный спектр или его часть снимается на фотоматериал. Можно получить спектр от призмы из кварца (диапазон 210-800 нм), стекла (360-2500 нм) или каменной соли (2500-16000 нм). В тех диапазонах спектра, где призмы слабо поглощают свет, изображения спектральных линий в спектрографе получаются яркими. В спектрографах с дифракционными решетками последние выполняют две функции: разлагают излучение в спектр и фокусируют цветовые составляющие на фотоматериал; такие приборы применяют и в ультрафиолетовой области.
Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом. Специальный затвор позволяет открывать объектив на время экспозиции.
Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.
В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F. Это приводит к увеличению глубины резкости.
Объектив современной фотокамеры состоит из нескольких линз, объединенных в оптические системы (например, оптическая схема Тессар). Число линз в объективах самых простых фотокамер — от одной до трех, а в современных дорогих фотоаппаратах их бывает до десяти или даже восемнадцати.
Оптическая схема Тессар
Оптических систем в объективе может быть от двух до пяти. Практически все оптические схемы устроены и работают одинаково – они фокусируют проходящие через линзы лучи света на светочувствительной матрице.
Только от объектива зависит качество изображения на снимке, будет ли фотография резкой, не исказятся ли на снимке формы и линии, хорошо ли она передаст цвета — все это зависит от свойств объектива, поэтому объектив и является одним из самых важных элементов современной фотокамеры.
Линзы объектива делают из специальных сортов оптического стекла или оптической пластмассы. Создание линз одно из самых дорогостоящих операций создания фотокамеры. В сравнении стеклянных и пластмассовых линз стоит отметить, то пластмассовые линзы дешевле и легче. В настоящее время большинство объективов недорогих любительских компактных камер изготавливается из пластмассы. Но, такие объективы подвержены царапинам и не так долговечны, примерно через два-три года они мутнеют, и качество фотографий оставляет желать лучшего. Оптика камер подороже изготавливается из оптического стекла.
В настоящее время большинство объективов компактных фотокамер изготавливается из пластмассы.
Между собой линзы объектива склеивают или соединяют при помощи очень точно рассчитанных металлических оправ.
Склейку объективов можно встретить намного чаще, нежели металлические оправы.
Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D) на удаленном экране Э. Система линз K, называемая конденсором, предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O.
JOHNSON & JOHNSON VISION РАСШИРЯЕТ ПРОГРАММУ ПЕРЕРАБОТКИ КОНТАКТНЫХ ЛИНЗ, ПОСКОЛЬКУ ОПРОС ПОКАЗЫВАЕТ, ЧТО БОЛЬШИНСТВО НОСИТЕЛЕЙ НЕ ЗНАЕТ О ВАРИАНТАХ ПЕРЕРАБОТКИ
Программа ACUVUE по переработке контактных линз, запускаемая in Boots Оптиками и всеми независимыми врачами, продолжает поощрять большее количество пациентов утилизировать свои контактные линзы экологичным способом
27 th Июнь 2022, Лондон – Компания Johnson & Johnson Vision, мировой лидер в области здоровья глаз и часть Johnson & Johnson MedTech*, сегодня объявила о продолжении расширения своей программы утилизации контактных линз ACUVUE.
После запуска первой общенациональной схемы утилизации контактных линз в 2019 г., результаты нового опроса показывают, что большинство пользователей контактных линз (58%) до сих пор не знают, что они могут перерабатывать свои линзы 1 .
Это исследование показало, что большинство тех, кто носит контактные линзы, утилизируют контактные линзы неэкологичными способами, при этом более половины (57%) выбрасывают линзы в мусорное ведро, а каждый пятый (20%) смывает их в унитаз или раковину. . Лишь немногим более трети (39%) заявили, что перерабатывают свои контактные линзы 1 .
Чтобы повысить осведомленность и сделать утилизацию контактных линз более доступной, Johnson & Johnson Vision вносит ряд обновлений в свою программу утилизации контактных линз ACUVUE, в том числе:
- В партнерстве с TerraCycle и их контейнерами Zero Waste Box, доступными в настоящее время для всех практик, контейнеры для отходов представляют собой простое решение для хранения, транспортировки и переработки отходов контактных линз, включая сами линзы, а также оригинальные крышки из фольги и блистерную упаковку.

- Johnson & Johnson Vision профинансирует 3500 контейнеров Zero Waste Box в 2022 г., что позволит перерабатывать около 5,6 млн линз, блистерных упаковок и фольги.
- Zero Waste Boxes будут распространены среди магазинов-партнеров оптики, чтобы предоставить потребителям общенациональный доступ к переработке контактных линз.
Изменения вносятся, чтобы способствовать более активному участию в программе и увеличить объем контактных линз, поступающих в системы переработки по всей Великобритании, на 25%. Эта схема, запущенная в Boots Opticians и избранных независимых клиниках, на сегодняшний день помогла переработать более 8,5 миллионов пар контактных линз, блистерных упаковок и фольгированных крышек. 2
Джейкоб Свин, управляющий директор по Северной Европе и генеральный директор по Великобритании и Ирландии в Johnson & Johnson Vision сказал; «В Johnson & Johnson Vision мы стремимся к устойчивому развитию и минимизации нашего воздействия на планету.
Результаты этого последнего опроса показывают, что владельцы линз не осознают, что могут безопасно утилизировать контактные линзы, но хотели бы сделать это, если бы знали, как это сделать.
Мы хотим помочь пациентам понять, что они могут получать удовольствие от ношения контактных линз, сохраняя при этом экологичность и гарантируя, что пластик не попадет в наши океаны или на свалку. Мы полны решимости продолжать решать ключевые проблемы, которые затрагивают всех нас, от переработки и сокращения нашего углеродного следа до оптимизации нашей упаковки».
По состоянию на 2022 год все контактные линзы марки ACUVUE производятся с использованием 100% возобновляемой энергии 3 , что помогает бизнесу достичь своей глобальной климатической цели и обеспечить 100% своих потребностей в электроэнергии за счет возобновляемых источников энергии на три года раньше.
Для получения дополнительной информации о программе утилизации контактных линз ACUVUE посетите сайт www.
acuvue.co.uk/recycle. Более подробная информация об усилиях Johnson & Johnson Vision по устойчивому развитию также доступна на сайте www.acuvue.com/sustainability.
Примечания для редакторов
Исследование было проведено к марту 2022 года и основано на опросе, проведенном среди 2000 взрослых британцев, репрезентативных по стране. Онлайн-опрос был проведен FH TRUE Global Intelligence в партнерстве с Vitreous World. Результаты представлены на уровне достоверности 95% с погрешностью +/- 2,2%.
О компании Johnson & Johnson Vision
Компания Johnson & Johnson Vision, входящая в состав Johnson & Johnson MedTech*, поставила перед собой смелую цель: изменить траекторию здоровья глаз во всем мире. Через наши операционные компании мы внедряем инновации, которые позволяют офтальмологам добиваться лучших результатов для пациентов на протяжении всей их жизни, с продуктами и технологиями, которые удовлетворяют неудовлетворенные потребности, включая аномалии рефракции, катаракту и сухость глаз.
В сообществах с наибольшими потребностями мы работаем в сотрудничестве, чтобы расширить доступ к качественной офтальмологической помощи, и мы стремимся помочь людям лучше видеть, лучше общаться, лучше жить. Посетите нас на jjvision.com, подпишитесь на @JNJVision в Twitter, на Johnson & Johnson Vision в LinkedIn и @JNJVision на Facebook.
О компании Johnson & Johnson MedTech
Компания Johnson & Johnson MedTech использует разнообразный опыт в области здравоохранения, целеустремленные технологии и стремление помочь людям изменить будущее медицинских вмешательств и предоставить каждому возможность жить максимально возможной жизнью. Уже более века мы внедряем прорывные научные инновации для удовлетворения неудовлетворенных потребностей и переосмысления здоровья. В хирургии, ортопедии, зрении и интервенционных решениях мы продолжаем помогать спасать жизни и создавать будущее, в котором медицинские решения будут более умными, менее инвазивными и более персонализированными.
ACUVUE является зарегистрированным товарным знаком Johnson & Johnson.
1 Онлайн-опрос 2000 взрослых британцев из 11 вопросов, проведенный TRUE Global Intelligence в партнерстве с Vitreous World, март 2022 г.
2 Данные JJV в файле. Ежемесячный отчет о переработке TerraCycle®, январь 2019 г.– июнь 2022 г.
3 Посетите: https://www.jjvision.com/press-release/johnson-johnson-vision-reinforces-sustainability-commitment
PP2022AMB5376
Схема прямого дебетования Contact Lens — Black & Lizars
Схема прямого дебетования контактных линз
Схема прямого дебетования контактных линз Black & Lizars предоставляет удобный способ распределить расходы на ношение контактных линз.

Это не кредитный договор. Ваши контактные линзы оплачиваются заранее. Когда вы присоединитесь к схеме, вам необходимо будет оплатить первоначальные платежи за первые три месяца.
Затем мы предоставим вам линзы на три месяца. С вашего банковского счета будет списываться каждый месяц. После следующих трех платежей вы получите следующую партию контактных линз.
Наши схемы контактных линз включают следующие льготы:
Приемы для проверки контактных линз с периодичностью, основанной на рекомендации вашего окулиста (обычно 30 фунтов стерлингов за посещение).
Непередаваемая скидка 20% на любые приобретенные товары, включая солнцезащитные очки, очки и аксессуары.
Бесплатная доставка на дом
В зависимости от типа вашего плана* вы также можете получить:
Контактные линзы
Растворы, если применимо, контактные линзы Spa 90.
09 90.2003 000. Мы знаем, что иногда случаются несчастные случаи, поэтому мы будем рады предложить вам случайную замену линз по запросу. Если вам потребуются контактные линзы для экстренной замены, обратитесь в местную практику, и они будут рады помочь.
Они не являются частью вашего соглашения, и мы оставляем за собой право изменять или отменять связанные преимущества без предварительного уведомления.
*не относится к специальным контактным линзам
**в зависимости от линзы и типа схемы. Пожалуйста, свяжитесь с вашей практикой для получения дополнительной информации.
Все платежи, которые вы делаете, составляются следующим образом:
7,95 фунтов стерлингов от общей суммы платежа покрывают ваше лечение, т. е. осмотры контактных линз, неотложные назначения контактных линз и вашу скидку 20%.
Плата за товары, включая почтовые расходы и упаковку. Обратите внимание, что 7,95 фунтов стерлингов за платеж будут вычтены из любых возмещений, причитающихся при отмене.
Все цены подлежат пересмотру, и любые изменения в вашем прямом дебете будут подробно описаны по электронной почте или письмом с уведомлением не менее чем за 10 дней.Любые вопросы, касающиеся прямого дебетования или схемы контактных линз, следует обсуждать с менеджером вашей местной практики.
Обратите внимание, скидка 20% не распространяется на товары со скидкой или по акции.
Мы хотим, чтобы ваши глаза были здоровы, а ваши линзы были максимально удобными, поэтому нам нужно, чтобы вы посещали инклюзивную проверку контактных линз не реже одного раза в 12 месяцев — ваш окулист сообщит, если нам нужно увидеть ты чаще.
Имейте в виду, что если проверка контактных линз просрочена, мы не сможем предоставить вам контактные линзы до тех пор, пока вы не пройдете проверку.
Если вы не проходили обследование, мы снизим ваш прямой дебет до 7,95 фунтов стерлингов, чтобы вы не переплачивали.
Мы свяжемся с вами, чтобы сообщить об этом.Если по какой-либо причине ваш банк или строительное общество отклонит наш запрос на ваш ежемесячный платеж прямым дебетом, мы попытаемся связаться с вами.
Имейте в виду, что мы не можем отправить ваши контактные линзы, пока вы не оплатите полную стоимость доставки, и любые пропущенные платежи могут привести к изменению вашего графика доставки.
Мы свяжемся с вами, чтобы договориться о выплате любых задолженностей и, при необходимости, можем изменить ваш график доставки.
Если мы не сможем получить ваши платежи и у вас не будет задолженности, ваша программа по контактным линзам будет автоматически аннулирована.
Схема контактных линз Black & Lizars не имеет минимального срока действия соглашения и может быть отменена в любое время. Пожалуйста, предупредите об этом за 3 месяца в письменной форме.


Изображение:


09 90.2003 000. Мы знаем, что иногда случаются несчастные случаи, поэтому мы будем рады предложить вам случайную замену линз по запросу. Если вам потребуются контактные линзы для экстренной замены, обратитесь в местную практику, и они будут рады помочь.
Все цены подлежат пересмотру, и любые изменения в вашем прямом дебете будут подробно описаны по электронной почте или письмом с уведомлением не менее чем за 10 дней.
Мы свяжемся с вами, чтобы сообщить об этом.