Источник света это: Источники света – виды, осветительные приборы

Источники света

Искусственные источники света — технические устройства различной конструкции, преобразовывающие энергию в световое излучение. В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света (например, триболюминесценция, радиолюминесценция, биолюминесценция и др.).

Источники света, наиболее часто применяемые для искусственного освещения, делят на три группы — газоразрядные лампы, лампы накаливания и светодиоды. Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет.

В системах производственного освещения предпочтение отдается газоразрядным лампам. Использование ламп накаливания допускается в случае невозможности или экономической нецелесообразности применения газоразрядных.

Основные характеристики источников света:

·         номинальное напряжение питающей сети U, B;

·         электрическая мощность W, Вт;

·         световой поток Ф, лм;

·         световая отдача (отношение светового потока лампы к ее мощности) лм/Вт;

·         срок службы t, ч;

·         Цветовая температура Tc, К.

Лампы накаливания

Лампа накаливания — источник света, в котором преобразование электрической энергии в световую происходит в результате накаливания электрическим током тугоплавкого проводника (вольфрамовой нити). Эти приборы предназначаются для бытового, местного и специального освещения. Последние, как правило, отличаются внешним видом — цветом и формой колбы. Коэффициент полезного действия (КПД) ламп накаливания составляет около 5-10%, такая доля потребляемой электроэнергии преобразуется в видимый свет, а основная ее часть превращается в тепло. Любые лампы накаливания состоят из одинаковых основных элементов. Но их размеры, форма и размещение могут сильно отличаться, поэтому различные конструкции не похожи друг на друга и имеют разные характеристики.

Существуют лампы, колбы которых наполнены криптоном или аргоном. Криптоновые обычно имеют форму «грибка». Они меньше по размеру, но обеспечивают больший (примерно на 10%) световой поток по сравнению с аргоновыми. Лампы с шаровой колбой предназначены для светильников, служащих декоративными элементами; с колбой в форме трубки — для подсветки зеркал в стенных шкафах, ванных комнатах и т. д. Лампы накаливания имеют световую отдачу от 7 до 17 лм/Вт и срок службы около 1000 часов. Они относятся к источникам света с теплой тональностью, поэтому создают погрешности при передаче сине-голубых, желтых и красных тонов. В интерьере, где требования к цветопередаче достаточно высоки, лучше использовать другие типы ламп. Также не рекомендуется применять лампы накаливания для освещения больших площадей и для создания освещенности, превышающей уровень 1000 Лк, так как при этом выделяется много тепла и помещение «перегревается».

Несмотря на эти ограничения, такие приборы все еще остаются классическим и излюбленным источникам света.

Галогенные лампы накаливания

 Лампы накаливания со временем теряют яркость, и происходит это по простой причине: испаряющийся с нити накаливания вольфрам осаждается в виде темного налета на внутренних стенках колбы. Современные галогенные лампы не имеют этого недостатка благодаря добавлению в газ-наполнитель галогенных элементов (йода или брома).

Лампы бывают двух форм: трубчатые — c длинной спиралью, расположенной по оси кварцевой трубки, и капсульные — с компактным телом накала.

 Цоколи малогабаритных бытовых галогенных ламп могут быть резьбовыми (тип Е), которые подходят к обычным патронам, и штифтовые (тип G), которые требуют патронов другого типа.

 Световая отдача галогенных ламп составляет 14-30 лм/Вт. Они относятся к источникам с теплой тональностью, но спектр их излучения ближе к спектру белого света, чем у ламп накаливания. Благодаря этому прекрасно «передаются» цвета мебели и интерьера в теплой и нейтральной гамме, а также цвет лица человека.

 Галогенные лампы применяются повсюду. Лампы, имеющие цилиндрическую или свечеобразную колбу и рассчитанные на сетевое напряжение 220В, можно использовать вместо обычных ламп накаливания. Зеркальные лампы, рассчитанные на низкое напряжение, практически незаменимы при акцентированном освещении картин, а также жилых помещений.

Люминесцентные лампы

 Люминесцентные лампы (ЛЛ) — разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, в которую закачаны пары ртути. Эти лампы значительно меньше расходуют электроэнергию, чем лампы накаливания или даже галогенные лампы, а служат намного дольше (срок службы до 20 000 часов). Благодаря экономичности и долговечности эти лампы стали самыми распространенными источниками света. В странах с мягким климатом люминесцентные лампы широко применяются в наружном освещении городов. В холодных районах их распространению мешает падение светового потока при низких температурах. Принцип их действия основан на свечении люминофора, нанесенного на стенки колбы. Электрическое поле между электродами лампы заставляет пары ртути выделять невидимое ультрафиолетовое излучение, а люминофор преобразует это излучение в видимый свет. Подбирая сорт люминофора, можно изменять цветовую окраску испускаемого света.

Разрядные лампы высокого давления

 Принцип действия разрядных ламп высокого давления — свечение наполнителя в разрядной трубке под действием дуговых электрических разрядов.

Два основных разряда высокого давления, применяемых в лампах — ртутный и натриевый. Оба дают достаточно узкополосное излучение: ртутный — в голубой области спектра, натрий — в желтой, поэтому цветопередача ртутных (Ra=40-60) и особенно натриевых ламп (Ra=20-40) оставляет желать лучшего. Добавление внутрь разрядной трубки ртутной лампы галогенидов различных металлов позволило создать новый класс источников света — металлогалогенные лампы (МГЛ), отличающиеся очень широким спектром излучения и прекрасными параметрами: высокая световая отдача (до 100 Лм/Вт), хорошая и отличная цветопередача Ra=80-98, широкий диапазон цветовых температур от 3000 К до 20000К, средний срок службы около 15 000 часов. МГЛ успешно применяются в архитектурном, ландшафтном, техническом и спортивном освещении. Еще более широко применяются натриевые лампы. На сегодняшний день это один самых экономичных источников света благодаря высокой светоотдаче (до 150 Лм/Вт), большому сроку службы и демократичной цене. Огромное количество натриевых ламп используется для освещения автомобильных дорог. В Москве натриевые лампы часто из экономии используются для освещения пешеходных пространств, что не всегда уместно из-за проблем с цветопередачей.

Светодиоды

Светодиод — это полупроводниковый прибор, преобразующий электрический ток в световое излучение. Специально выращенные кристаллы дают минимальное потребление электроэнергии. Великолепные характеристики светодиодов (световая отдача до 120 Лм/Вт, цветопередача Ra=80-85, срок службы до 100 000 часов) уже обеспечили лидерство в светосигнальной аппаратуре, автомобильной и авиационной технике.

Светодиоды применяются в качестве индикаторов (индикатор включения на панели прибора, буквенно-цифровое табло). В больших уличных экранах и в бегущих строках применяется массив (кластер) светодиодов. Мощные светодиоды используются как источник света в фонарях и прожекторах. Так же они применяются в качестве подсветки жидкокристаллических экранов. Последние поколения этих источников света можно встретить в архитектурном и интерьерном освещении, а так же в бытовом и коммерческом.

 

Преимущества:

·         Высокий КПД.

·         Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).

·         Длительный срок службы.

·         Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это — достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.

·         Малый угол излучения — также может быть как достоинством, так и недостатком.

·         Безопасность — не требуются высокие напряжения.

·         Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

·         Отсутствие ядовитых составляющих (ртуть и др.) и, следовательно, лёгкость утилизации.

·         Недостаток — высокая цена.

·         Срок службы: среднее время полной выработки для светодиодов составляет 100000 часов, это в 100 раз больше ресурса лампочки накаливания.

Источник света | это… Что такое Источник света?

Облако, окутанное лучами Солнца — главного источника тепла и света на Земле

Источник света — любой объект, излучающий энергию в световом спектре. По своей природе подразделяются на искусственные и естественные.

В физике идеализированы моделями точечных и непрерывных источников света.

Содержание

  • 1 Возникновение света
  • 2 Интенсивность света
  • 3 Моделирование источников света в виртуальных пространствах
  • 4 Примечания
  • 5 Ссылки

Возникновение света

Излучение фотона света при переходе атома с зарядом ядра +Ze с третьего энергетического уровня во второй. —- До 1923 года большинство физиков отказывались верить в то, что электромагнитное излучение обладает квантовыми свойствами. Вместо этого они склонны были объяснять поведение фотонов квантованием материи, как, например, в модели атома водорода, предложенной Бором. Хотя все полуклассические модели были опровергнуты экспериментами, они привели к созданию квантовой механики.

Хорошо известно, что при нагревании до определённых температур вещества начинают излучать свет: будь то вольфрамовый волосок в электрической лампочке или наше небесное светило, температура на поверхности которого составляет тысячи градусов[1].

Учёными было установлено, что энергия атомов носит дискретный характер и изменяется определёнными скачками, своими для каждого атома. Эти установленные возможные значения энергий атомов получили названия энергетических или квантовых уровней. Электроны, находясь на одном из высших энергетических уровней, самопроизвольно переходят на более низшие через промежуток времени порядка 10−8 секунды.

При этом самопроизвольный переход из низшего состояния в любое другое невозможен. Этот уровень называется основным, в то время, как остальные — возбуждёнными. В нормальных условиях все атомы находятся в своих основных энергетических состояниях. Для того, чтобы возбудить атом, ему необходимо сообщить некоторую энергию, причём для каждого атома существует определённая наименьшая порция энергии, переводящая из основного состояния в возбуждённое (так для водорода эта величина равна 10,1 эВ — это расстояние между его первым и вторым энергетическими уровнями).

При переходе из более высоких состояний в более низкие испускается порция энергии — фотон. Согласно формуле Планка испускаемая энергия рассчитывается так:

,

где h — постоянная Планка, а νnm — частота фотона при переходе из уровня n на уровень m (n>m), которую можно рассчитать через энергии этих уровней:

С ростом температуры тела излучение дополняется всё более высокими частотами.

Таким образом, излучение тела, нагретого до нескольких тысяч градусов, будет представлять сплошной спектр: от инфракрасного до ультрафиолетового.

Интенсивность света

Любой источник света характеризуется своей интенсивностью — средним по времени значением величины вектора Пойнтинга:

Таким образом, интенсивность пропорциональна квадрату амплитуды колебаний электромагнитного поля:

Через значение напряжённости электрического поля её можно выразить следующим образом:

,

где  — диэлектрическая постоянная,  — электродинамическая постоянная (скорость света в вакууме),  — показатель преломления среды,  — магнитная проницаемость вещества,  — диэлектрическая проницаемость вещества.

Оперируя понятием среднего по времени значения величины вектора Пойнтинга, обычно подразумевают, что усреднение проводится либо по бесконечному промежутку времени, либо по интервалу существенно превышающему характерное время изменения напряжённости электрического поля. Однако, при регистрации интенсивности время усреднения определяется временем интегрирования фотоприемника, а для устройств, работающих в режиме накопления сигнала (фотокамеры, фотопленка и т. п.), временем экспозиции. Поэтому приемники излучения оптического диапазона реагируют на среднее значение потока энергии лишь в некотором интервале. То есть сигнал с фотоприемника пропорционален:

Так как в большинстве случаев физической оптики, например в задачах связанных с интерференцией и дифракцией света, исследуется в основном пространственное положение максимумов и минимумов и их относительная интенсивность, постоянные множители, не зависящие от пространственных координат, часто не учитываются. По этой причине часто полагают:

Моделирование источников света в виртуальных пространствах

В приложениях компьютерной графики реального времени, например в компьютерных играх, выделяют три основных вида источников света[2]:

  • Точечные источники света
  • Бесконечно удалённые (направленные) источники света
  • Прожекторы

Они лишь приближённо описывают свои аналоги в физическом мире, тем не менее в сочетании с качественными моделями затенения, например затенением по Фонгу они позволяют создавать вполне реалистичные изображения.

Примечания

  1. Г.С. Ландсберг Элементарный учебник физики. Том 3. Колебания и волны. Оптика. Атомная и ядерная физика. — 12-е изд.. — М.: Физматлит, 2001. — 656 с. — ISBN 5-9221-0138-2
  2. Д. Роджерс Алгоритмические основы машинной графики = Procedural elements for computer graphics. — пер. с англ.. — М.: Мир, 1989. — ISBN 5-03-000476-9,0-07-053534-5  (англ.)

Ссылки

  • Свойства источника света и материала. Типы источников света. Суммарное освещение
  • Энергия электро-магнитных волн. Интенсивность света

Источники света · Вселенная в классе

Источником света является все, что создает свет, естественный или искусственный. К естественным источникам света относятся Солнце и звезды. К искусственным источникам света относятся фонарные столбы и телевизоры.

Без источников света мы не могли бы видеть окружающий мир, однако не каждый объект, который мы видим, является источником света. Многие объекты просто отражают свет от источника света.

Источники света — это задание, которое предлагает учащимся выяснить, откуда берется свет, как он распространяется и как его можно использовать, прежде чем они смогут использовать силу света для исследования Вселенной!

Источники света Руководство для учителя

Источники света Рабочий лист для учащихся

Полные инструкции

Цели обучения
  • Узнать, что такое источники света.
  • Приведите примеры различных типов источников света: естественных и искусственных
  • Поймите, что мы видим объекты, потому что свет отражается от них и попадает в наши глаза.
Материалы
  • Распечатанный Источники света Рабочий лист на учащегося
Исходная информация

Источник света — это все, что излучает свет. Есть естественных и искусственных источников света. Несколько примеров естественных источников света включают Солнце, звезды и свечи. Несколько примеров искусственных источников света включают лампочки, фонарные столбы и телевизоры. Без источников света мы не могли бы видеть окружающий мир, однако не каждый видимый нами объект является источником света. Многие объекты просто отражают свет от источника света, например столов, деревьев и Луны.

Шаг за шагом
  1. Начните это задание, попросив учащихся назвать некоторые объекты, излучающие свет. Они называются источниками света.

  2. Запишите ответы на доске в три столбца без подписей: неисточники света, искусственные источники света и естественные источники света.

  3. Обсудите разницу между объектами на доске — естественными и искусственными. Некоторые из них отражают только свет?

Свет Солнца включает в себя все цвета радуги. Когда этот свет попадает на Луну, он отражается обратно на Землю и попадает в наши глаза, позволяя нам увидеть Луну.
  1. Раздайте каждому учащемуся рабочий лист «Источники света» и попросите его ответить на первый вопрос.

  2. Обсудите с учащимися вопрос 2, «Как свет позволяет нам видеть другие объекты?» Объясните, что показано на приведенной ниже диаграмме (у них будет копия на их рабочем листе), а затем попросите их объяснить своими словами на своем рабочем листе.

  3. Обсудите вопрос 3, «Могут ли камень или металл стать источниками света?» . Объясните, что даже камень и металл могут действовать как источник света, если они достаточно нагреются, обратите их внимание на изображение падающей звезды (метеора) в нижней части их рабочего листа, они оба сделаны из камня и металла, но мы видим, как они сияют. когда они сгорают в атмосфере Земли.

Заключение

Пригласите свой класс открыть для себя самые яркие источники света во Вселенной – звезды! С помощью роботов-телескопов LCOGT вы можете фотографировать звезды, галактики и звездные скопления настолько яркие, что их можно увидеть за миллиарды световых лет!

Ссылки на учебные программы

KS2 Наука в национальной учебной программе Уэльса «Как все работает: как распространяется свет и как это можно использовать».

Что такое источник света? – Lightsources.org

Источники света, входящие в состав lightsources.org, представляют собой ускорители, производящие исключительно интенсивные лучи рентгеновского, ультрафиолетового и инфракрасного света, что делает возможным проведение как фундаментальных, так и прикладных исследований в различных областях, от физики до биологии и технология, которая невозможна с более традиционным оборудованием.

«Свет» относится к ширине электромагнитного спектра, который включает в себя видимый свет, а также свет с длинами волн, которые мы не видим, например: радиоволны, микроволны, инфракрасное, ультрафиолетовое, рентгеновское и гамма-лучи. Однако эти различные типы света используются в повседневной жизни. Например, сканеры в аэропортах используют рентгеновские лучи для проверки содержимого вашего чемодана. Точно так же правильный тип света и правильное оборудование могут помочь нам увидеть вещи в гораздо более мелких деталях, чем может разглядеть человеческий глаз. Эта способность является ключом к ответам на некоторые фундаментальные вопросы об окружающем нас мире, например: из чего состоит наша планета? Какие процессы поддерживают жизнь? Как мы можем победить вирусы?

   Рис. 1  Электромагнитный спектр охватывает диапазон от длинноволновых радиоволн до коротковолнового гамма-излучения. (С разрешения: Advanced Light Source)  

На эти вопросы можно ответить только на молекулярном уровне; на уровне атомов и электронов. Источники света предоставляют инструмент для ответа на эти вопросы. Их можно сравнить с «супермикроскопом», поскольку они обеспечивают очень яркие формы рентгеновского, инфракрасного и ультрафиолетового света, что позволяет исследовать образцы в мельчайших деталях. Каждый диапазон света подходит для конкретной работы. Чтобы «увидеть» атомы, нам нужно использовать форму света с гораздо более короткой длиной волны, чем видимый свет. Как правило, коротковолновые (жесткие) рентгеновские лучи наиболее полезны для исследования атомной структуры.

Как правило, длинноволновое (мягкое) рентгеновское и ультрафиолетовое излучение являются хорошим выбором для изучения химических реакций. Инфракрасный диапазон идеально подходит для изучения колебаний атомов в молекулах и твердых телах, а на его очень длинноволновом конце (терагерцовые волны) он также полезен для некоторых типов экспериментов по электронной структуре. Идентификация элементов в образцах является прерогативой рентгеновских лучей.

Этот диапазон электромагнитного спектра известен как «синхротронный свет», так как он производится специальной синхротронной машиной. Источник синхротронного света обычно начинается с электронной пушки, содержащей искусственный материал, к которому прикладывается электрический и тепловой ток. Это приводит к тому, что электроны «взлетают» и начинают свое путешествие, продвигаясь вниз по линейному ускорителю (ускорительному ускорителю). Затем они входят в кольцеобразное ускорительное кольцо, где разгоняются до релятивистских скоростей. Наконец, они входят в другое кольцо, часто называемое «накопительным кольцом», где они циркулируют часами.

Электроны будут двигаться по прямой линии, поэтому в точках вокруг кольца специальные «изгибающиеся» магниты помогают им придерживаться кругового пути. По мере того, как электроны циркулируют, мощные магниты удерживают их собранными вместе и сфокусированными.

Синхротронный свет производится, когда электроны меняют направление вокруг кольца. В синхротронах это происходит, когда ими манипулируют с помощью изгибных магнитов или когда они проходят через вводные устройства. В точках, где электроны меняют направление, они излучают веер излучения (известный как синхротронный свет). Это излучение ответвляется от накопительного кольца и поступает в лаборатории или «лучевые линии». Здесь он очищается с помощью таких устройств, как монохроматоры и зеркала, прежде чем светится на образец, что позволяет исследователям получать подробные данные о структуре и поведении образца.

Лазеры на свободных электронах обеспечивают дополнительный источник света, который производится по-разному.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *