Оптические аберрации: Аберрация в оптике определение виды и различия

Аберрация в оптике определение виды и различия

В данной статье узнаем про аберрации оптических систем, что это такое и какие есть различия между аберрациями.

Что такое аберрации

Аберрации — это ошибки в изображении, возникающие из-за несовершенства оптической системы. Другими словами, аберрации возникают, когда оптическая система неправильно направляет лучи объекта. Оптические компоненты могут создавать ошибки в изображении, даже если они сделаны из лучших материалов и не имеют дефектов. Некоторые типы аберраций могут возникать при отображении электромагнитного излучения одной длины волны (монохроматические аберрации), а другие типы возникают при отображении электромагнитного излучения двух или более длин волн (хроматические аберрации).

Монохроматические аберрации могут быть сгруппированы в несколько различных категорий: сферические, коматические (кома), астигматизм, кривизна поля и искажение. Идея эталонной сферы часто используется при обсуждении аберраций. Для всех сфер луч, нарисованный перпендикулярно поверхности сферы, будет пересекать центр сферы, независимо от того, какое место на поверхности выбрано.

сфера с лучамисфера с лучами
Сфера с лучами, нарисованными перпендикулярно поверхности, пересекается в центре сферы.

Контрольная сфера не является физической структурой; это просто математическая конструкция, с которой сравнивается волновой фронт электромагнитного излучения. Если электромагнитный волновой фронт имеет форму эталонной сферы, то волновой фронт будет идеально сфокусирован в центре сферы. Помните, что определение луча указывает, что лучи нарисованы перпендикулярно волновому фронту. Все лучи, связанные со сферическим волновым фронтом, будут пересекаться в центре сферы. Если волновой фронт не сферический, некоторые из лучей будут проходить через центр сферы.

эталонная сфераэталонная сфера

Сравнивая волновой фронт электромагнитного излучения с эталонной сферой, можно определить, какие аберрации присутствуют на изображении и насколько они серьезны.

Сферическая аберрация

Сферические аберрации возникают для линз, которые имеют сферические поверхности. Лучи, проходящие через точки на линзе дальше от оси, преломляются больше, чем те, которые ближе к оси. Это приводит к распределению очагов вдоль оптической оси.

параксиальные и периферические лучи имеют разные фокусыпараксиальные и периферические лучи имеют разные фокусы
Сферические аберрации приводят к тому, что параксиальные и периферические лучи имеют разные фокусы.

Лучи, которые образуют небольшой угол с оптической осью и проходят близко к оси, называются параксиальными лучами. Периферийные лучи взаимодействуют с краями компонентов в оптической системе. Когда волновой фронт сферически аберрируется, периферические лучи фокусируются ближе к линзе, чем параксиальные лучи. Разница между фокусировкой этих двух типов лучей является способом измерения степени сферической аберрации в системе.

Можно конструировать оптические компоненты с асферическими поверхностями, которые не имеют сферической аберрации. Линзы с градиентным индексом, которые имеют показатели преломления, которые являются самыми высокими в центре линзы и постепенно уменьшаются ближе к краю линзы, также могут устранить сферическую аберрацию. Однако оптические компоненты со сферическими поверхностями гораздо проще и дешевле в производстве, чем компоненты с асферическими поверхностями или характеристиками индекса градиента. Из-за этого большинство разработчиков оптических систем используют готовые компоненты со сферическими поверхностями.

сферическая аберрациясферическая аберрация

Мера сферической аберрации оптической системы — это физическое расстояние между фокусами эталонной сферы и периферийных лучей аберрированного волнового фронта (между R и W).

При проектировании систем с несколькими объективами разработчики оптических систем используют взаимодействия всех компонентов системы для минимизации сферических и других аберраций. Недостаточная коррекция одной линзы может использоваться для компенсации чрезмерной коррекции другой линзы. Если оптическая система должна содержать только одну сферическую линзу, сферическая аберрация может быть сведена к минимуму, если обе поверхности линзы вносят одинаковый вклад в мощность линзы. Изготовление линзы с большим радиусом кривизны также поможет минимизировать сферическую аберрацию.

Коматическая аберрация (Кома)

Сферические аберрации описывают, где различные точки фокусируются вдоль оптической оси. Изображение точки объекта, которая лежит вне оптической оси, сформирует изображение в форме капли. Расклешенный хвост изображения обычно направлен в сторону от оси, но он также может быть ориентирован в направлении оси.

комакома
Кома размывает изображение внеосевой точки в форме слезы.

Когда объект изображается линзой, которая страдает от комы, лучи, которые проходят через периферию линзы, формируют изображение большего размера, чем лучи, которые проходят через линзу ближе к оси. Исправление комы требует, чтобы различные изображения были сделаны с перекрытием. В действительности, изображения, сформированные параксиальным и периферическим лучами, должны испытывать различные степени увеличения.

Кому можно свести к минимуму, тщательно указав радиусы кривизны двух сторон одной линзы или используя комбинацию оптических элементов. Когда оптическая система не имеет сферической аберрации или комы, она называется апланатической.

Астигматизм

Лучи, которые испускаются из точки объекта, формируют правильный круглый конус, когда они движутся к линзе. Когда точка объекта расположена вне оси, этот конус лучей образует эллипс на поверхности линзы. (Если бы конус лучей был испущен из точки объекта на оси, они бы образовали круг на поверхности линзы.) Тангенциальная плоскость пересекает большую ось эллипса и содержит как оптическую ось, так и точку объекта. Сагиттальный план ориентирован перпендикулярно тангенциальной плоскости.

Из-за различных путей пересечения линзы лучи в тангенциальной плоскости и лучи в сагиттальной плоскости эффективно испытывают линзы с разными фокусными расстояниями. Эффективная линза, которую испытывают лучи в тангенциальной плоскости, имеет большую мощность. Из-за этой асимметрии лучи в тангенциальной плоскости фокусируются ближе к линзе, чем сагиттальные лучи.

иллюстрация астигматизмаиллюстрация астигматизма

На верхнем рисунке показано, как система, страдающая от астигматизма, фокусирует конус лучей из внеосевой точки на тангенциальную и сагиттальную плоскости. Нижняя фигура помещает экран просмотра в точку объекта, тангенциальный фокус и сагиттальный фокус.

Расположение точек изображения для тангенциального и сагиттального лучей совпадает на оптической оси, и они расходятся для точек дальше от оптической оси.

АстигматизмАстигматизм

Астигматизм вызывает фокусирование лучей в тангенциальной плоскости на поверхность, отличную от лучей в сагиттальной плоскости.

Кривизна поля

Кривизна поля — это аберрация, связанная с астигматизмом, но она может существовать в системе, которая не страдает астигматизмом. В случае искривления поля объект изображается на изогнутой поверхности, а не на плоскости. Изображение не размыто этой аберрацией; оно просто проецируется на изогнутую поверхность. Это проблема для камер и слайд-проекторов, потому что плоскость изображения должна быть плоской для этих применений. Изогнутое поле изображения можно сплющить с помощью комбинации линз. Если используются две линзы, их показатели преломления (n1 и n2) и их фокусные расстояния (f1 и f2) должны соответствовать следующему условию:

n1f1 + n2f2 = 0.

кривизна полякривизна поля

Если система демонстрирует кривизну поля, объекты отображаются на изогнутой плоскости изображения.

Искажение

Как и кривизна поля, изображение, которое страдает от искажений, не размыто. Вместо этого точки изображения смещены в радиальном направлении от положений, предсказанных при прохождении параксиальных лучей через оптическую систему. Точки изображения могут быть смещены либо к оптической оси, либо от нее. Этот эффект предполагает, что различные части объекта испытывают различное увеличение.

При подушкообразном искажении увеличение увеличивается в указанных направлениях. Изображение квадрата, страдающего от подушкообразного искажения, имело бы вытянутые углы.

При бочкообразным искажении увеличение уменьшается по указанным направлениям. Изображение квадрата, страдающего от бочкообразного искажения, будет характеризоваться пересеченными углами.

подушкообразное и бочкообразное искажениеподушкообразное и бочкообразное искажение
Подушкообразные искажения сжимают и растягивают изображение квадрата по углам (а). 
Бочкообразное искажение сдвигает углы изображения квадрата к центру (b).

Аберрации объективов

© 2013 Vasili-photo.com

Аберрации фотографического объектива – это последнее, о чём стоит думать начинающему фотографу. Они абсолютно не влияют на художественную ценность ваших фотографий, да и на техническое качество снимков их влияние ничтожно. Тем не менее, если вы не знаете, чем занять своё время, прочтение данной статьи поможет вам разобраться в многообразии оптических аберраций и в методах борьбы с ними, что, конечно же, бесценно для настоящего фотоэрудита.

Аберрации оптической системы (в нашем случае – фотографического объектива) – это несовершенство изображения, которое вызывается отклонением лучей света от пути, по которому они должны были бы следовать в идеальной (абсолютной) оптической системе.

Свет от всякого точечного источника, пройдя через идеальный объектив, должен был бы формировать бесконечно малую точку на плоскости матрицы или плёнки. На деле этого, естественно, не происходит, и точка превращается в т.н. пятно рассеяния, но инженеры-оптики, разрабатывающие объективы, стараются приблизиться к идеалу насколько это возможно.

Различают монохроматические аберрации, в одинаковой степени присущие лучам света с любой длиной волны, и хроматические, зависящие от длины волны, т.е. от цвета.

Особняком стоит дифракция, которую хоть и можно отнести к аберрациям объектива, однако в силу её фундаментального характера и принципиальной неустранимости обычно рассматривают отдельно от прочих аберраций.

Монохроматические аберрации

В 1857 г. немецкий математик и астроном Филип Людвиг Зейдель выявил и математически описал пять т.н. монохроматических аберраций третьего порядка. Вот они:

  • Сферическая аберрация
  • Кома
  • Астигматизм
  • Кривизна поля изображения
  • Дисторсия

Настоящая статья написана для фотографов, а не для математиков, а потому нас, прежде всего, интересует не то, какие формулы описывают каждую из аберраций, а то, как аберрации проявляют себя в практической фотографии.

Рассмотрим их по порядку.

Сферическая аберрация

Особенность сферической линзы такова, что лучи света, проходящие через линзу вблизи её края, преломляются сильнее, чем лучи, проходящие через центр. Объясняется это тем, что исходно параллельные лучи света падают на сферическую поверхность линзы под разными углами. Чем дальше лежит путь луча от оптической оси объектива, тем больше угол его падения, и тем сильнее он преломляется. В конечном итоге это приводит к невозможности сфокусировать точку иначе как в виде размытого по краям пятна, и всё изображение оказывается нерезким.

Идеальная линза
Ход световых лучей в идеальной линзе.
Сферическая аберрация
Ход лучей при сферической аберрации.

Диафрагмирование объектива заметно уменьшает сферическую аберрацию, поскольку при уменьшении отверстия диафрагмы отсекается часть лучей, проходящая через край линзы, а оставшиеся вблизи оптической оси лучи формируют более резкое изображение.

При конструировании объективов сферические аберрации устраняются комбинированием положительных и отрицательных линз, а также применением специальных асферических элементов, т.е. линз, преломляющая поверхность которых имеет асферическую форму, с тем расчётом, чтобы, вне зависимости от удалённости лучей света от оптической оси объектива, все они преломлялись по возможности одинаково, и таки сходились при фокусировке в одну точку. Чрезмерное исправление сферических аберраций, кстати, также ни к чему хорошему не приводит: пятно рассеяния становится ярче по краям, нежели в центре, что проявляется в виде кольцеобразного боке.

Кома

Коматическая аберрация или кома возникает, когда лучи света проходят через линзу под углом к оптической оси. В результате изображение точечных источников света приобретает по краям кадра вид ассиметричных пятен каплеобразной (или, в тяжёлых случаях, кометообразной) формы.

Кома
Коматическая аберрация.

Кома бывает заметна по краям кадра при съёмке с широко открытой диафрагмой. Поскольку диафрагмирование уменьшает количество лучей, проходящих через край линзы, оно, как правило, устраняет и коматические аберрации.

Конструкционно с комой борются примерно так же, как и со сферическими аберрациями.

Астигматизм

Астигматизм проявляется в том, что для наклонного (не параллельного оптической оси объектива) пучка света лучи, лежащие в меридиональной плоскости, т.е. плоскости, которой принадлежит оптическая ось, фокусируются отличным образом от лучей, лежащих в сагиттальной плоскости, которая перпендикулярна плоскости меридиональной. Это, в конечном итоге приводит к ассиметричному растягиванию пятна нерезкости. Астигматизм заметен по краям изображения, но не в его центре.

Астигматизм труден для понимания, поэтому я попробую проиллюстрировать его на простом примере. Если представить, что изображение буквы А находится в верхней части кадра, то при астигматизме объектива оно бы выглядело так:

КомаКома
Меридиональный фокус.
Сагиттальный фокус.
КомаКома
При попытке достичь компромисса мы получаем универсально нерезкое изображение.
Исходное изображение без астигматизма.

Для исправления астигматической разности меридионального и сагиттального фокусов требуется не менее трёх элементов (обычно два выпуклых и один вогнутый).

Очевидный астигматизм в современном объективе указывает обычно на непараллельность одного или нескольких элементов, что является однозначным дефектом.

Кривизна поля изображения

Под кривизной поля изображения подразумевают характерное для весьма многих объективов явление, при котором резкое изображение плоского объекта фокусируется объективом не на плоскость, а на некую искривлённую поверхность. Например, у многих широкоугольных объективов наблюдается выраженная кривизна поля изображения, в результате которой края кадра оказываются сфокусированы как бы ближе к наблюдателю, чем центр. У телеобъективов кривизна поля изображения обычно выражена слабо, а у макрообъективов исправляется практически полностью – плоскость идеального фокуса становится действительно плоской.

Кривизна поля изображения
Кривизна поля изображения.

Кривизну поля принято считать аберрацией, поскольку при фотографировании плоского объекта (тестовой таблицы или кирпичной стены) с фокусировкой по центру кадра, его края неизбежно окажутся не в фокусе, что может быть ошибочно принято за нерезкость объектива. Но в реальной фотографической жизни мы редко сталкиваемся с плоскими объектами – мир вокруг нас трёхмерен, – а потому свойственную широкоугольным объективам кривизну поля я склонен рассматривать скорее как их достоинство, нежели недостаток. Кривизна поля изображения – это то, что позволяет получить одинаково резкими и передний, и задний план одновременно. Посудите сами: центр большинства широкоугольных композиций находится вдалеке, в то время как ближе к углам кадра, а также внизу, располагаются объекты переднего плана. Кривизна поля делает и то, и другое резким, избавляя нас от необходимости закрывать диафрагму сверх меры.

Рускеала
Кривизна поля позволила при фокусировке на дальние деревья получить резкими ещё и глыбы мрамора внизу слева.
Некоторая нерезкость в области неба и на дальних кустах справа меня в этой сцене мало беспокоила.

Следует, однако, помнить, что для объективов с выраженной кривизной поля изображения непригоден способ автоматической фокусировки, при котором вы сперва фокусируетесь на ближнем к вам объекте, используя центральный фокусировочный датчик, а затем перекомпоновываете кадр (см. «Как пользоваться автофокусом»). Поскольку объект при этом переместится из центра кадра на периферию, вы рискуете получить фронт-фокус вследствие кривизны поля. Для идеального фокуса придётся сделать соответствующую поправку.

Дисторсия

Дисторсия – это аберрация при которой объектив отказывается изображать прямые линии прямыми. Геометрически это означает нарушение подобия между объектом и его изображением вследствие изменения линейного увеличения по полю зрения объектива.

Выделяют два наиболее распространённых типа дисторсии: подушкообразная и бочкообразная.

При бочкообразной дисторсии линейное увеличение уменьшается по мере удаления от оптической оси объектива, в результате чего прямые линии по краям кадра изгибаются наружу, и изображение выглядит выпуклым.

При подушкообразной дисторсии линейное увеличение, напротив, возрастает с удалением от оптической оси. Прямые линии изгибаются внутрь, и изображение кажется вогнутым.

Кроме того, встречается комплексная дисторсия, когда линейное увеличение сперва уменьшается по мере удаления от оптической оси, но ближе к углам кадра снова начинает возрастать. В таком случае прямые линии приобретают форму усов.

Бочкообразная дисторсия
Бочкообразная дисторсия.
Подушкообразная дисторсия
Подушкообразная дисторсия.
Комплексная дисторсия
Комплексная дисторсия.

Дисторсия наиболее выражена в зум-объективах, особенно с большой кратностью, но заметна и в объективах с фиксированным фокусным расстоянием. Для широкоугольных объективов характерна преимущественно бочкообразная дисторсия (экстремальный пример такой дисторсии – объективы типа fisheye или «рыбий глаз»), в то время как телеобъективам чаще свойственна подушкообразная дисторсия. Нормальные объективы, как правило, наименее подвержены дисторсии, но полностью исправляется она только в хороших макрообъективах.

Ладога
Это не Земля закругляется, а обычная бочкообразная дисторсия.

У зум-объективов часто можно наблюдать бочкообразную дисторсию в широкоугольном положении и подушкообразную дисторсию в телеположении при практически свободной от дисторсии середине диапазона фокусных расстояний.

Степень выраженности дисторсии может также изменяться в зависимости от дистанции фокусировки: у многих объективов дисторсия очевидна, когда они сфокусированы на близлежащем объекте, но делается почти незаметной при фокусировке на бесконечность.

В XXI в. дисторсия не является большой проблемой. Практически все RAW-конвертеры и многие графические редакторы позволяют исправлять дисторсию при обработке фотоснимков, а многие современные камеры и вовсе делают это самостоятельно в момент съёмки. Программное исправление дисторсии при наличии надлежащего профиля даёт прекрасные результаты и почти не влияет на резкость изображения.

Хочу также заметить, что на практике исправление дисторсии требуется не так уж часто, ведь дисторсия бывает заметна невооружённым глазом только тогда, когда по краям кадра присутствуют заведомо прямые линии (горизонт, стены зданий, колонны). В сценах же, не имеющих на периферии строго прямолинейных элементов, дисторсия, как правило, совершенно не режет глаз.

Хроматические аберрации

Хроматические или цветовые аберрации обусловлены дисперсией света. Не секрет, что показатель преломления оптической среды зависит от длины световой волны. У коротких волн степень преломления выше, чем у длинных, т.е. лучи синего цвета преломляются линзами объектива сильнее, чем красного. Как следствие, изображения предмета, формируемые лучами различного цвета, могут не совпадать между собой, что приводит к появлению цветных артефактов, которые и называются хроматическими аберрациями.

В чёрно-белой фотографии хроматические аберрации не так заметны, как в цветной, но, тем не менее, они существенно ухудшают резкость даже чёрно-белого изображения.

Различают два основных типа хроматических аберраций: хроматизм положения (продольная хроматическая аберрация) и хроматизм увеличения (хроматическая разность увеличения). В свою очередь, каждая из хроматических аберраций может быть первичной или вторичной. Также к хроматическим аберрациям относят хроматические разности геометрических аберраций, т.е. различную выраженность монохроматических аберраций для волн разной длины.

Хроматизм положения

Хроматизм положения или продольная хроматическая аберрация возникает, когда лучи света с разной длиной волны фокусируются в разных плоскостях. Иными словами, лучи синего цвета фокусируются ближе к задней главной плоскости объектива, а лучи красного цвета – дальше, чем лучи зелёного цвета, т.е. для синего цвета наблюдается фронт-фокус, а для красного – бэк-фокус.

Хроматическая аберрация
Хроматизм положения.

К счастью для нас, хроматизм положения научились исправлять ещё в XVIII в. путём комбинирования собирательной и рассеивающей линз, изготовленных из стёкол с разными показателями преломления. В результате продольная хроматическая аберрация флинтовой (собирательной) линзы компенсируется за счёт аберрации кроновой (рассеивающей) линзы, и лучи света с различной длиной волны могут быть сфокусированы в одной точке.

Исправление первичной хроматической аберрации
Исправление хроматизма положения.

Объективы, в которых исправлен хроматизм положения, называются ахроматическими. Практически все современные объективы являются ахроматами, так что о хроматизме положения на сегодняшний день можно спокойно забыть.

Хроматизм увеличения

Хроматизм увеличения возникает за счёт того, что линейное увеличение объектива различается для разных цветов. В результате изображения, формируемые лучами с различной длиной волны, имеют немного разные размеры. Поскольку изображения разного цвета отцентрированы по оптической оси объектива, хроматизм увеличения отсутствует в центре кадра, но возрастает к его краям.

Хроматизм увеличения проявляется на периферии снимка в виде цветной каймы вокруг объектов с резкими контрастными краями, такими как, например, тёмные ветви деревьев на фоне светлого неба. В областях, где подобные объекты отсутствуют, цветная кайма может быть незаметной, но общая чёткость всё равно падает.

При конструировании объектива хроматизм увеличения исправить значительно труднее, чем хроматизм положения, поэтому эту аберрацию можно в той или иной степени наблюдать у весьма многих объективов. Этому подвержены в первую очередь зум-объективы с большой кратностью, особенно в широкоугольном положении.

Тем не менее, хроматизм увеличения не является сегодня поводом для беспокойства, поскольку он достаточно легко исправляется программными средствами. Все хорошие RAW-конвертеры в состоянии устранять хроматические аберрации в автоматическом режиме. Кроме того, всё больше цифровых фотоаппаратов снабжаются функцией исправления аберраций при съёмке в формате JPEG. Это означает, что многие объективы, считавшиеся в прошлом посредственными, сегодня с помощью цифровых костылей могут обеспечить вполне приличное качество изображения.

Хроматическая аберрация
Этот фрагмент фотографии иллюстрирует хроматизм увеличения. Наведите курсор для сравнения с программно исправленым вариантом.

Первичные и вторичные хроматические аберрации

Хроматические аберрации подразделяются на первичные и вторичные.

Первичные хроматические аберрации – это хроматизмы в своём исходном неисправленном виде, обусловленные различной степенью преломления лучей разного цвета. Артефакты первичных аберраций окрашены в крайние цвета спектра – сине-фиолетовый и красный.

При исправлении хроматических аберраций хроматическая разность по краям спектра устраняется, т.е. синие и красные лучи начинают фокусироваться в одной точке, которая, к сожалению, может не совпадать с точкой фокусировки зелёных лучей. При этом возникает вторичный спектр, поскольку хроматическая разность для середины первичного спектра (зелёных лучей) и для его сведённых вместе краёв (синих и красных лучей) остаётся не устранённой. Это и есть вторичные аберрации, артефакты которых окрашены в зелёный и пурпурный цвета.

Когда говорят о хроматических аберрациях современных ахроматических объективов, в подавляющем большинстве случаев имеют в виду именно вторичный хроматизм увеличения и только его. Апохроматы, т.е. объективы, в которых полностью устранены как первичные, так и вторичные хроматические аберрации, чрезвычайно сложны в производстве и вряд ли когда-нибудь станут массовыми.

Сферохроматизм

Сферохроматизм – это единственный заслуживающий упоминания пример хроматической разности геометрических аберраций и проявляется как едва заметное окрашивание зон вне фокуса в крайние цвета вторичного спектра.

Сферохроматизм
Сферохроматизм.

Сферохроматизм возникает из-за того, что сферическая аберрация, о которой говорилось выше, редко бывает в равной степени скорректирована для лучей разного цвета. В результате пятна нерезкости на переднем плане могут иметь лёгкую пурпурную кайму, а на заднем плане – зелёную. Сферохроматизм в наибольшей степени свойственен светосильным длиннофокусным объективам, при съёмке с широко открытой диафрагмой.

О чём стоит беспокоиться?

Беспокоиться не стоит. Обо всём, о чём следовало побеспокоиться, разработчики вашего объектива, скорее всего, уже побеспокоились.

Идеальных объективов не бывает, поскольку исправление одних аберраций ведёт к усилению других, и конструктор объектива, как правило, старается найти разумный компромисс между его характеристиками. Современные зумы и так содержат по двадцать элементов, и не стоит усложнять их сверх меры.

Все криминальные аберрации исправляются разработчиками весьма успешно, а с теми, что остались легко поладить. Если у вашего объектива есть какие-то слабые стороны (а таких объективов – большинство), научитесь обходить их в своей работе. Сферическая аберрация, кома, астигматизм и их хроматические разности уменьшаются при диафрагмировании объектива (см. «Выбор оптимальной диафрагмы»). Дисторсия и хроматизм увеличения устраняются при обработке фотографий. Кривизна поля изображения требует дополнительного внимания при фокусировке, но тоже не смертельна.

Иными словами, вместо того чтобы обвинять оборудование в несовершенстве, фотолюбителю следует скорее начать совершенствоваться самому, досконально изучив свои инструменты и используя их в соответствии с их достоинствами и недостатками.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект, внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Желаю удачи!


  Дата публикации: 15.11.2013
Лицензия Creative Commons

Вернуться к разделу «Матчасть»

Перейти к полному списку статей


Аберрации оптических систем

Аберрации оптических систем (от латинского aberratio – отклонение) – искажения, ошибки, или погрешности изображений, формируемых оптическими системами. Причина их возникновения в  то, что луч отклоняется от того направления, по которому в близкой к идеалу оптической системе он должен был бы идти. Различные нарушения гомоцентричности (отчетливости, соответствия или окрашенности) в структуре выходящих из оптической системы пучков лучей характеризуют аберрации.

Наиболее распространенными видами аберраций оптических систем можно считать:

1. Сферическую аберрацию. Она характеризуется недостатком изображения. При нем испущенные одной точкой объекта световые лучи, проходящие вблизи оси оптической системы, и лучи, проходящие через отдаленные от оси части системы, не собираются в одной точке.

2. Кому. Так называют аберрацию, которая возникает во время косого прохождения световых лучей через оптическую систему. В результате этого наблюдается нарушение симметрии пучка лучей относительно его оси и изображение точки (которая создается системой) принимает вид несимметричного пятна рассеяния.

3. Астигматизм. ОКомаб этой аберрации говорят, когда световая волна испытывает деформацию во время прохождения оптической системы. В результате этого, наблюдается деформация, при которой исходящие из одной точки объекта пучки лучей не пересекаются в одной точке, а располагаются в двух взаимно перпендикулярных отрезках на некотором расстоянии друг от друга. Такие пучки получили название астигматических.

4. Дисторсию. Так называется аберрация, характеризующаяся нарушением геометрического подобия между объектом и изображением объекта. Она обуславливается неодинаковостью линейного оптического увеличения на разных участках изображения.

5. Кривизну поля изображения. При этой аберрации наблюдается процесс, когда изображение плоского предмета получается резким на искривленной поверхности, а не на плоскости, как должно было.

Все вышеперечисленные виды аберраций оптических систем называются геометрическими или аберрациями Зейделя. В реальных системах отдельные виды геометрических аберраций можно встретить крайне редко. Куда чаще мы можем наблюдать симбиоз всех аберраций. А метод выделения отдельных видов аберраций является искусственным приемом, призванным облегчить анализ явления.

В то же время существует и хроматическая аберрация. Наблюдается связь этогХроматическая аберрацияо вида аберрации и  зависимости показателя преломления оптических сред от длины волны света. Проявления этой аберрации наблюдаются в оптических системах, в которые входят элементы из преломляющих материалов. Как пример, линзы. Отметим также, что зеркалам свойственна ахроматичность.

Проявление хроматических аберраций может наблюдаться при виде постороннего окрашивания изображения, а также, когда у изображения предмета появляются цветные контуры, которых у предмета ранее не наблюдалось. Хроматические аберрации обусловливаются дисперсией оптических сред (зависимость показателя преломления оптических материалов от длины проходящей световой волны). Именно из них образуется оптическая система

К числу этих аберраций можно отнести хроматическую аберрацию или хроматизм положения (ее иногда называют «продольным хроматизмом») и хроматическу аберрацию  или хроматизм увеличения.

Хотите узнать больше об аберрациях оптических систем? У вас остались какие-то вопросы или появилось желание получше разобраться в отдельных нюансах? – Мы всегда готовы вам помочь. Просто зарегистрируйтесь на нашем сайте, выберите подходящий тарифный план и вперед!

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Оптические аберрации | БИК Дом оптики

Аберрации оптических систем (от лат. — отклонение) — это искажения, погрешности изображения, вызванные несовершенством оптической системы. Аберрации были установлены в 1856 году немецким ученым Ф.Л. Зайделем в результате анализа световых лучей, появляющихся при прохождении через объектив монохромного света (т.е. света одной волны). Аберрациям, в разной степени, подвержены любые объективы, даже самые дорогостоящие. Считается, что чем больше диапазон фокусных расстояний объектива, тем выше уровень его аберраций.

Основные типы аберраций  в оптических системах:

 Сферическая аберрация.

Большое количество объективов сконструировано с использованием линз со сферическими поверхностями. Такие линзы просты в изготовлении, но сферическая форма линз не идеальна для получения резких снимков. Эффект сферической аберрации проявляется в смягчении контраста и размытии деталей на получаемом изображении.

Как это происходит? Особенность сферической линзы такова, что лучи света, проходящие через линзу вблизи её края, преломляются сильнее, чем лучи, проходящие через центр. Объясняется это тем, что исходно параллельные лучи света падают на сферическую поверхность линзы под разными углами. Чем дальше лежит путь луча от оптической оси объектива, тем больше угол его падения, и тем сильнее он преломляется. В конечном итоге это приводит к невозможности сфокусировать точку иначе как в виде размытого по краям пятна, и всё изображение оказывается нерезким.

Хроматическая аберрация.

Хроматические аберрации – это явление вызванное дисперсией света проходящего через объектив, т.е. разложением луча света на составляющие. Лучи с разной длиной волны (разного цвета) преломляются под разными углами, поэтому из белого пучка образуется радуга. Хроматические аберрации приводят к снижению чёткости изображения и появлению цветной «бахромы», особенно это заметно на контрастных объектах.

Встречаются как в дешевых, так и в дорогих длиннофокусных объективах. Для борьбы с хроматическими аберрациями применяются специальные апохроматические линзы из низкодисперсного стекла, не разлагающего световые лучи на волны.

Коматическая аберрация (кома).

Кома возникает, когда лучи света проходят через линзу под углом к оптической оси. В результате изображение точечных источников света приобретает по периферии кадра вид ассиметричных пятен кометообразной формы.

Форма кометы ориентирована радиально, причем ее хвост направлен либо к центру, либо от центра изображения. Вызываемая этим размытость по краям изображения называется коматической засветкой. Определенной степени улучшения можно добиться диафрагмированием объектива. Кома также может привести к засвечиванию размытых участков изображения, создавая неприятный эффект. В сложных оптических системах кому корректируют вместе со сферической аберрацией путем подбора линз.

Астигматизм.

При объективе, скорректированным на сферическую и коматическую аберрацию, точка объекта на оптической оси будет точно воспроизведена как точка в изображении, но точка объекта, расположенная вне оптической оси, появится не как точка в изображении, а скорее как затемнение или как линия. Такой тип аберрации называется астигматизмом.

При этом виде искажения предметы на фотографии выглядят искривленными, местами размытыми, прямые линии выглядят изогнутыми, возможны затемнения. Можно наблюдать это явление по краям изображения, если слегка сместить фокус объектива в положение, в котором точка объекта резко изображена как линия, ориентированная в радиальном направлении от центра изображения, и опять сместить фокус в другое положение, в котором точка объекта резко изображена в виде линии, ориентированной в направлении концентрического круга. (Расстояние между этими двумя положениями фокуса называется астигматической разницей.)

Астигматизм исправляется сложно, чтобы исправить астигматизм нужно включение в схему объектива дополнительных линз.

Кривизна поля изображения.

При этом виде аберраций плоскость изображения становится изогнутой, таким образом если центр изображения в фокусе, то края изображения не в фокусе и наоборот, если края в фокусе, то центр не в фокусе. Кривизна поля изображения, как правило, достигает больших значений у простых объективов (которые имеют в своем составе до 4 линз). Корректируется подбором кривизны поверхностей и толщины линз, а также расстояний между ними. Для качественного исправления, с учетом других видов аберраций, необходимо присутствие в составе не менее двух отрицательных линз. При диафрагмировании отрицательное влияние кривизны поля на качество изображения уменьшается.

Дисторсия (искажение).

Этот вид аберрации проявляется в искажении прямых линий. Если прямые линии вогнутые дисторсию называют подушкообразной, если выпуклыми — бочкообразной. Объективы с переменным фокусным расстоянием обычно создают бочкообразную дисторсию на «широком угле» (минимальное значение “зума”) и подушкообразную — на  максимальном значении “зума”. Ярко выраженный пример оптической дисторсии можно наблюдать у объективов Fish-Eye (Рыбий глаз). Для устранения дисторсии применяют подбор линз и других элементов при разработке оптической системы.

 

Аберрация оптической системы – характеристика и основные виды

Аберрация оптической системы – это искажения изображений, которые возникают на выходе из оптической системы. Название происходит от лат. aberratio — уклонение, удаление. Искажения состоят в том, что оптические изображения не полностью соответствуют предмету. Это проявляется в размытости изображения и называется монохроматической геометрической аберрацией либо окрашенности изображения — хроматической аберрацией оптической системы. Чаще всего оба вида аберрации проявляются вместе.
В приосевой (параксиальной) области оптическая система работает практически идеально, точка отображается точкой, а прямая — прямой и т.д. Однако, по мере отдаления точки от оптической оси, лучи от нее пересекаются в плоскости изображения не в одной точке. Таким образом, возникает круг рассеивания, т.е. возникают аберрации.
Величину аберрации можно определить путем расчёта по геометрическим и оптическим формулам через сравнение координат лучей, а также приближённо при помощи формул теории аберраций.
Существует описание явления аберрации как в лучевой теории (отступление от идентичности описывается через геометрические аберрации и фигуры рассеяния лучей), так и в представлениях волновой оптики (оценивается деформация сферической световой волны по пути через оптическую систему). Обычно, для характеристики объектива с большими аберрациями используются геометрические аберрации, в противном случае применяются представления волновой оптики.

Монохроматические геометрические аберрации

В 1856 году немецкий ученый Зайдель в результате анализа световых лучей установил пять аберраций объектива, появляющихся при прохождении через объектив монохромного света (т.е. света одной волны). Эти аберрации, описанные ниже, называются пятью аберрациями Зайделя. Монохроматические геометрические аберрации оптических систем являются следствием их несовершенства и проявляются в монохроматичном свете. В отличие от идеальной оптической системы, в которой все лучи от какой-либо точки предмета в меридиональной плоскости после прохождения через систему концентрируются в одной точке, в реальной оптической системе пересечение плоскости изображения этими лучами происходит в разных точках. Координаты этих точек зависят от направления луча, координат точки пересечения с плоскостью входного зрачка и конструктивных элементов оптической системы (радиусы поверхностей, толщина оптических элементов, коэффициенты преломления линз и тд.).

Сферическая аберрация

Проявляется в несовпадении фокусов для лучей света, проходящих на разных расстояниях от оптической оси, вследствие чего нарушается гомоцентричность пучков лучей от точечного источника, хотя симметрия этих пучков сохраняется. Это единственный вид геометрической аберрации, которая имеет место даже тогда, когда исходная точка расположена на главной оптической оси системы. При сферической аберрации цилиндрический пучок лучей после преломления линзой приобретает вид не конуса, а воронкообразной фигуры. Изображение точки имеет дисковую форму с неоднородной освещённостью. Причиной является тот факт, что преломляющие поверхности линз пересекаются с лучами широкого пучка под различными углами, из-за чего удалённые лучи преломляются сильнее и образуют свои точки схода на некотором отдалении от фокальной плоскости.

Кома

Аберрация Кома нарушает гомоцентричность широких световых пучков, которые входят в систему под углом к оптической оси. На оси центрированных оптических систем кома отсутствует. Каждый участок кольцевой зоны оптической системы, удалённый от оси на расстояние R даёт кольцо изображения точки, радиус которого увеличивается с увеличением R. Из-за несовпадения центров колец происходит их наложение, что приводит к тому, что изображение точки, формируемое оптической системой, принимает форму несимметричного пятна рассеяния с максимальной освещённостью у вершины фигуры рассеяния, напоминающего комету. В сложных оптических системах кому корректируют вместе со сферической аберрацией путем подбора линз. Системы без коматической и сферической аберрации называют апланатами.

Астигматизм

Если для объектива исправлены сферическая аберрация и кома, т.е. точка объекта, расположенная на оптической оси, правильно воспроизводится в виде точки изображения, но при этом точка объекта, не лежащая на оси, воспроизводится на изображении не в виде точки, а в виде эллипса или линии, то такой тип аберрации называется астигматизмом. Причиной возникновения является различная кривизна оптической поверхности в различных плоскостях сечения, а углы преломления лучей пучка зависят от углов их падения.  При прохождении через оптическую систему лучи пересекаются на разном расстоянии от преломляющей поверхности. В результате в разных сечениях фокус светового пучка оказывается в разных точках.
Существует такое положение на поверхности изображения, когда все лучи пучка в меридиональной (или перпендикулярной ей сагиттальной) плоскости пересекутся на этой поверхности. Астигматический пучок изображает точку в форме двух астигматических фокальных линий на фокальных поверхностях, имеющих форму поверхностей вращения, и касающихся друг друга в точке оси системы. Если для некоторой точки поля положения этих поверхностей не совпадают, имеет место астигматизм или астигматическую разность меридионального и сагиттального фокусов. Астигматизм называют положительным, если меридиональные фокусы находятся ближе к поверхности преломления, чем сагиттальные, в противном случае — отрицательным.

Кривизна поля изображения

Проявляется в том, что изображение плоского (перпендикулярного к оптической оси) объекта находится на поверхности, вогнутой либо выпуклой по отношению к объективу, что делает резкость неравномерной по полю изображения. При резкой фокусировке центральной части изображения края будут лежать не в фокусе (не резкими) и наоборот. Кривизна поля изображения, как правило, достигает больших значений у простых объективов (до 4 линз). Корректируется подбором кривизны поверхностей и толщины линз, а также расстояний между ними. Для качественного исправления, с учетом других видов аберраций, необходимо присутствие в составе не менее двух отрицательных линз. При диафрагмировании отрицательное влияние кривизны поля на качество изображения уменьшается.

Дисторсия

Дисторсией (искривлением) является изменение линейного увеличения по полю зрения, что приводит к нарушению геометрического подобия между объектом и его изображением. Этот вид аберрации не зависит от координат пересечения луча и плоскости входного зрачка, но зависит от расстояния от источника до оптической оси. Оптическая система без дисторсии называется ортоскопической. В объективах с симметричной конструкцией проявляется незначительно. Для устранения дисторсии применяют подбор линз и других элементов при разработке оптической системы. В цифровой фотографии дисторсия может быть исправлена с помощью компьютерной обработки.

Хроматические аберрации

Излучение большинства источников света характеризуется сложным спектральным составом, что приводит к возникновению хроматических аберраций, которые, в отличие от геометрических, могут возникать и в параксиальной области. Дисперсия (рассеивание) света – зависимость показателя преломления оптического элемента от длины волны света, является причиной возникновения двух видов хроматических аберраций: хроматизма положения фокусов и хроматизма увеличения. В первом случае, который еще называют продольным хроматизмом, возникает смещение плоскости изображения для разных длин волн, во втором — изменяется поперечное увеличение. Хроматические аберрации проявляются в окрашивании изображения, в появлении у него цветных контуров, отсутствующих у источника. К хроматическим аберрациям относят также хроматические разности геометрических аберраций, в частности, хроматическую разность сферических аберраций (сферохроматизм) для лучей различных длин волн и хроматическую разность аберраций наклонных пучков.

Дифракционная аберрация

Причиной дифракционной аберрации является волновая природа света. Возникает, как результат дифракции света на диафрагме и оправе объектива. Препятствует увеличению разрешающей способности фотообъектива. Из-за дифракционной аберрации ограничено минимальное угловое расстояние между точками, разрешаемое объективом. Высококачественные объективы подвержены ей в той же степени, что и простые. Полностью принципиально не устранима, однако может быть уменьшена путем увеличения апертуры оптической системы.

Устранить аберрации полностью в оптических системах невозможно. Важно свести их к минимально допустимым значениям, которые обусловлены техническими требованиями и стоимостью изготовления системы.

Автор: FC,
05.10.2014 г.

АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ • Большая российская энциклопедия

АБЕРРА́ЦИИ ОПТИ́ЧЕСКИХ СИСТЕ́М (от лат. aberratio – ук­ло­не­ние), ис­ка­же­ния изо­бра­же­ний, соз­да­вае­мых оп­тич. сис­те­ма­ми. Про­яв­ля­ют­ся в том, что оп­тич. изо­бра­же­ния не впол­не от­чёт­ли­вы, неточ­но со­от­вет­ст­ву­ют объ­ек­там или ока­зы­ва­ют­ся ок­ра­шен­ны­ми. Су­ще­ст­ву­ет неск. ви­дов абер­ра­ций. Наи­бо­лее рас­про­стра­нён­ны­ми яв­ля­ют­ся хро­ма­ти­че­ская абер­ра­ция и сле­дую­щие гео­мет­рич. абер­ра­ции: сфе­ри­че­ская, ас­тиг­ма­тизм, ко­ма, дис­тор­сия, кри­виз­на по­ля изо­бра­же­ния.

Сфе­ри­че­ская абер­ра­ция за­клю­ча­ет­ся в том, что све­то­вые лу­чи, ис­пу­щен­ные од­ной точ­кой объ­ек­та и про­шед­шие од­ни из них вбли­зи оп­тич. оси, а дру­гие че­рез от­да­лён­ные от оси час­ти сис­те­мы, не со­би­ра­ют­ся в од­ной точ­ке. Вслед­ст­вие это­го изо­бра­же­ние, соз­да­вае­мое па­рал­лель­ным пуч­ком лу­чей на пер­пен­дику­ляр­ном оси эк­ра­не, име­ет вид не точ­ки, а круж­кá с яр­ким ядром и ос­ла­бе­ваю­щим по яр­ко­сти оре­о­лом (т. н. кру­жок рас­сея­ния). Спе­ци­аль­ным под­бо­ром линз (со­би­раю­щих и рас­сеи­ваю­щих) сфе­рич. абер­ра­цию мож­но поч­ти пол­но­стью уст­ра­нить.

Рис. 1. Световой пучок, прошедший через оптическую систему, обладающую астигматизмом. Внизу показаны сечения пучка плоскостями, перпендикулярными оптической оси системы.

Ас­тиг­ма­тизм про­яв­ля­ет­ся в том, что изо­бра­же­ние точ­ки, не ле­жа­щей на глав­ной оп­тич. оси, пред­став­ля­ет со­бой не точ­ку, а две вза­им­но пер­пен­ди­ку­ляр­ные ли­нии, рас­по­ло­жен­ные в раз­ных плос­ко­стях на не­ко­то­ром рас­стоя­нии друг от дру­га. Изо­бра­же­ния точ­ки в про­ме­жу­точ­ных ме­ж­ду эти­ми плос­ко­стя­ми се­че­ни­ях име­ют вид эл­лип­сов (рис. 1). Ас­тиг­ма­тизм обу­слов­лен не­оди­на­ко­во­стью кри­виз­ны оп­тич. по­верх­но­сти в раз­ных плос­ко­стях се­че­ния па­даю­ще­го на неё све­то­во­го пуч­ка и воз­ни­ка­ет ли­бо вслед­ст­вие асим­мет­рии оп­тич. сис­те­мы (напр., в ци­лин­д­рич. лин­зах), ли­бо в обыч­ных сфе­рич. лин­зах при па­де­нии све­то­во­го пуч­ка под боль­шим уг­лом к оси. Ас­тигма­тизм ис­прав­ля­ют та­ким под­бо­ром линз, что­бы од­на ком­пен­си­ро­ва­ла ас­тиг­ма­тизм дру­гой. Ас­тиг­ма­тиз­мом мо­жет об­ла­дать че­ло­ве­че­ский глаз (см. Асти­гма­тизм гла­за).

При на­клон­ном па­де­нии лу­чей на оп­тич. си­сте­му в ре­зуль­та­те на­ру­ше­ния сим­мет­рии пуч­ка воз­ни­ка­ет ещё од­на абер­ра­ция – ко­ма, при ко­то­рой изо­бра­же­ние точ­ки име­ет вид не­сим­мет­рич­но­го пят­на рас­се­я­ния. Её раз­ме­ры про­пор­ци­о­наль­ны квад­ра­ту уг­ло­вой апер­ту­ры оп­тич. си­сте­мы и уг­ло­во­му уда­ле­нию точ­ки-объ­е­кта от оп­тич. оси. Ко­ма ве­ли­ка в те­ле­ско­пах с па­ра­бо­лич. зер­ка­ла­ми. Ис­прав­ля­ют ко­му под­бо­ром линз.

Рис. 2. Дисторсия.

Для дис­тор­сии ха­рак­тер­но на­ру­ше­ние гео­мет­рич. по­до­бия ме­ж­ду объ­ек­том и его изо­бра­же­ни­ем. Дис­тор­сия обус­лов­ле­на не­оди­на­ко­вым ли­ней­ным уве­ли­че­ни­ем оп­тич. сис­те­мы на раз­ных уча­ст­ках изо­бра­же­ния. При­мер ис­ка­же­ний, ко­то­рые да­ёт сис­те­ма, об­ла­даю­щая дис­тор­си­ей, при­ве­дён на рис. 2. Сле­ва от цен­траль­но­го квад­ра­та по­ка­за­но его изо­бра­же­ние, ис­ка­жён­ное за счёт по­душ­ко­об­раз­ной (по­ло­жи­тель­ной) дис­тор­сии, спра­ва – ис­ка­жён­ное за счёт боч­ко­об­раз­ной (от­ри­ца­тель­ной) дис­тор­сии. Дис­тор­сия ус­тра­ня­ет­ся под­бо­ром линз.

Кри­виз­на по­ля – абер­ра­ция осе­сим­мет­рич­ной оп­тич. сис­те­мы, она за­клю­ча­ет­ся в том, что изо­бра­же­ние плос­ко­го пред­ме­та по­лу­ча­ет­ся пло­ским не в плос­ко­сти, как долж­но быть в иде­аль­ной сис­те­ме, а на ис­крив­лён­ной по­верх­но­сти. В слож­ных оп­тич. сис­те­мах кри­виз­ну по­ля ис­прав­ля­ют, со­че­тая лин­зы с по­верх­но­стя­ми раз­ной кри­виз­ны.

Оп­тич. сис­те­мы мо­гут об­ла­дать од­но­вре­мен­но неск. абер­ра­ция­ми, уст­ра­нить их все сра­зу – очень слож­ная за­да­ча. Обыч­но абер­ра­ции уст­ра­ня­ют час­тич­но в за­ви­си­мо­сти от на­зна­че­ния оп­тич. сис­те­мы. В не­ко­то­рых слу­ча­ях ис­поль­зу­ют ме­то­ды адап­тив­ной оп­ти­ки.

Хро­ма­тич. абер­ра­ция свя­за­на с за­ви­си­мо­стью по­ка­за­те­ля пре­лом­ле­ния сред от дли­ны вол­ны све­та.

Не­со­вер­шен­ст­ва изо­бра­же­ний, фор­ми­руе­мых оп­тич. сис­те­мой, воз­ни­ка­ют так­же в ре­зуль­та­те ди­фрак­ции све­та на оп­ра­вах линз, диа­фраг­мах и т. п. Та­кие абер­ра­ции прин­ци­пи­аль­но не­уст­ра­ни­мы, хо­тя и мо­гут быть умень­ше­ны. Но они обыч­но не так силь­но влия­ют на изо­бра­же­ние, как гео­мет­ри­че­ские и хро­ма­ти­че­ские.

Аберрации и их влияние на изображение – Д-микро

Дисперсия света. Хроматические аберрации.Дисперсия света. Хроматические аберрации.
Статья описывает базовые понятия аберраций, классификацию аберраций, а также возможные методики устранения аберраций применительно к микроскопным объективам. В статье описана методика выбора микроскопных объективов исходя из задач исследователя.
Аберрации в оптических системах – погрешность изображения, вызванная любым отклонением реальных лучей от геометрических направлений по которым они должны были бы идти в идеальной оптической системе. Аберрации можно классифицировать на монохроматические (то есть присущие монохроматическим лучам – лучам одной длины волны) и хроматические.

Монохроматические аберрации

Монохроматические аберрации – погрешности, присущие любой реальной оптической системе. Возникновение связано с тем, что поверхности, преломляющие лучи неспособны собрать в точку широкие пучки лучей, падающие на них под большими углами. Монохроматические аберрации приводят к искажению изображения точки в некоторую фигуру рассеяния, что снижает четкость изображения и нарушает подобие изображения и предмета.
Монохроматические аберрации классифицируют пятью аберрациями Зейделя:

SI – сферическая аберрация

Сферическая аберрация оптической системы. Лучи, параллельные оси оптической системы сходится не в точке а в перетяжке.Сферическая аберрация оптической системы. Лучи, параллельные оси оптической системы сходится не в точке а в перетяжке.Сферическая аберрация оптической системы. Лучи, параллельные оси оптической системы сходится не в точке, а в перетяжке. Сферическая аберрация оптических систем из-за несовпадения фокусов для лучей света проходящих на разных расстояниях от оптической оси. Нарушает гомоцентричность пучка света, но не нарушает симметричность.
Существует несколько путей исправления сферической аберрации:
Во-первых, снижение кривизны линзы (использование стекла с большим показателем преломления в совокупности с увеличением радиусов поверхностей линзы, сохраняя, тем самым, ее оптическую силу).
Во-вторых, применением комбинации из положительных и отрицательных линз. Обычно параллельно с исправлением сферической аберрации исправляют также хроматические аберрации.
В-третьих, применяют диафрагмирование – отсечение краевых лучей широкого пучка. Способ позволяет снизить значение рассеяния, но непригоден для оптических систем требующих высокой светосилы.
Полностью избавиться от сферической аберрации невозможно, но способы снизить ее эффективно применяются в микроскопии.

SII – кома

Аберрация Кома. Лучи, приходящие под углом к оптической оси не собираются в одной точкеАберрация Кома. Лучи, приходящие под углом к оптической оси не собираются в одной точкеАберрация Кома. Лучи, приходящие под углом к оптической оси не собираются в одной точке Аберрация Кома обусловлена тем, что лучи, приходящие под углом к оптической оси, собираются не в одной точке. Методика исправления Комы схожа с методикой исправления сферических аберраций и, в основном, строится на использовании комбинаций положительных и отрицательных линз.

SIII – астигматизм

Астигматизм оптической системыАстигматизм оптической системы
Астигматизм оптической системыАберрация, при которой изображение точки, лежащей вне оси и сформированное узким пучком лучей представляет собой два перпендикулярных отрезка расположенных на разном расстоянии плоскости Гаусса (плоскости безаберрационного фокуса).
Астигматизм не может быть исправлен диафрагмированием, т.к. проявляется и на узких пучках. Для коррекции астигматизма применяют дуплеты положительных и отрицательных линз.

SIV – кривизна поля изображения

Кривизна поля оптической системы. Изображение плоского объекта перпендикулярного оси оптической системы в плоскостях F1 и F2Кривизна поля оптической системы. Изображение плоского объекта перпендикулярного оси оптической системы в плоскостях F1 и F2Кривизна поля оптической системы. Изображение плоского объекта перпендикулярного оси оптической системы в плоскостях F1 и F2 Аберрация, при которой изображение плоского объекта, перпендикулярного оси оптической системы лежит на выпуклой или вогнутой (обычно сферической в случае симметричной оптики) поверхности относительно объектива.
Погрешность вносимая аберрацией, очень сильно сказывается в микроскопии, так как получаемое изображение плоского объекта не находится полностью в фокальной плоскости и, таким образом, на нескорректированной системе мы не можем наблюдать полностью резкое изображение объекта по всему полю.
Кривизна поля корректируется при помощи расчета системы содержащей две и более отрицательных линз, а также использующей воздушное пространство между линзами.

SV – дисторсия

Изменение коэффициента линейного увеличения по полю зрения. Подушкообразная и бочкообразная дисторсия.Изменение коэффициента линейного увеличения по полю зрения. Подушкообразная и бочкообразная дисторсия.Изменение коэффициента линейного увеличения по полю зрения. Подушкообразная и бочкообразная дисторсия. Дисторсия – изменение коэффициента линейного увеличения оптической системы по полю зрения. Дисторсия не приемлема в микроскопии, так как система, подверженная дисторсии, не обеспечивает геометрическое подобие наблюдаемого объекта и его изображения. Дисторсия исправляется подбором линз на этапе проектировки объектива. Также возможно исправление дисторсии на этапе компьютерной обработки изображения.

Хроматические аберрации (ХА)

Хроматические аберрации. Разница показателя преломления оптической системы для лучей с различной длиной волны.Хроматические аберрации. Разница показателя преломления оптической системы для лучей с различной длиной волны.Хроматические аберрации. Разница показателя преломления оптической системы для лучей с различной длиной волны. Хроматические аберрации – погрешности вносимые в изображение разницей коэффициента преломления для пучков с различными длинами волн.
При прохождении света через оптические материалы наблюдается дисперсия – разложение белого света на спектр. Именно явление дисперсии запечатлено на самой знаменитой обложке музыкального альбома 20 века – Pink Floyd – The Dark Side of the Moon.
Паразитная дисперсия не позволяет лучам с различными длинами волн сфокусироваться в одной точке.
Таким образом, различают три вида хроматизма: хроматизм положения, хроматизм увеличения и хроматизм разности геометрических аберраций. В статье мы рассмотрим хроматизм положения, так как природа ХА абсолютно одинакова во всех случаях.
Для любой оптической линзы коэффициент преломления синих лучей, как правило, больше, чем красных, поэтому точка фокуса синих лучей Fblue расположена ближе к задней главной точке линзы, чем точка фокуса красных лучей Fred. Отсюда следует, что лучи, полученные разложением белого света, будут иметь различное фокусное расстояние. Единого фокусного расстояния у одной линзы не существует, а есть совокупность фокусных расстояний — по одному фокусу на луч каждого цвета.
Разность Fblue-Fred это и есть «хроматизм положения» (или хроматической разностью положения, продольной хроматической аберрацией)
Диафрагмирование несколько уменьшает хроматизм положения. При этом изображения предмета в лучах разного цвета будут находиться на разных расстояниях от задней главной точки. Если наводить оптическую систему на резкость по красным лучам, изображение в синих лучах будет не в фокусе, и наоборот.
Конструкция микроскопных объективов рассчитана на устранение хроматических аберраций. Система линз, выполняющих сближение фокусов двух (например, синих и жёлтых) лучей, называется ахроматической, а при сближении фокусов трёх лучей —апохроматической системой.
Основное правило при исправлении ХА является исправление ХА суммарно для всей системы. Нет необходимости исправлять хроматизм каждого элемента. Важно, чтобы суммарная положительная и отрицательная дисперсия элементов системы была равна нулю.

Критерии при выборе микроскопных объективов

Рассмотрев основные типы различных оптических аберраций мы можем описать основные критерии при выборе объективов для лабораторного микроскопа, ведь именно характеристиками объектива определяются разрешающая способность микроскопа, дисторсия, возможность проведения точных измерений, возможность качественного получения большого поля изображения при сильном увеличении путем сшивки частичных полей.
В большинстве случаев при выборе объективов работает правило, что чем качественнее и дороже объектив – тем он лучше для решения любых задач. Но на самом деле, во-первых, это не всегда абсолютно достоверно, во-вторых – экономическую составляющую вопроса это правило не затрагивает. А ведь порой именно она играет решающую роль при выборе оборудования того или иного класса.
Объективы для микроскопов делятся на различные классы в зависимости от коррекции монохроматических и хроматических аберраций. Каждый производитель имеет свою классификацию и свои уникальные названия для каждого из классов, что крайне усложняет прозрачность выбора той или иной линейки.
Все производители различают три больших класса объективов: Ахроматы, Полу-апохроматы (или Флюотары) и Апохроматы. Критерием внесения объектива в тот или иной класс будет являться сходимость фокальных плоскостей для трех основных цветов: красного, зеленого и синего.
Компания Leica Microsystems предлагает следующую оценку критериев (она может незначительно отличаться от оценки других производителей – Zeiss, Olympus, Nikon и др). Эта оценка дает максимально прозрачное представление коррекции ХА в зависимости от класса объектива.

Класс объективовКоррекция хроматических аберрацийПрименение
Ахроматы (Achromats)Между Fred и Fblue < 2x DoF*.
т.е. красный и синий лучи сведены в одну область, длиной менее 2 глубин резкости. Расстояние до фокуса зеленого луча не определено.
Рутинная микроскопия в видимом световом диапазоне
Полу-Апохроматы (Semi-Apochromats)Fred, Fblue и Fgreen <2,5x DoF*.
т.е. фокус красного, синего и зеленого лучей сведены в одну область шириной 2,5 глубины резкости.
Для качественной визуализации в видимом световом диапазоне, а также достижения высококонтрастного изображения.
Апохроматы (Apochromats)Fred, Fblue и Fgreen <1x DoF*.
т.е. фокус красного, синего и зеленого лучей сведены в одну точку. (Коррекция ХА по трем цветам)
Для решения задач сверхточной микроскопии, измерительной микроскопии при большом увеличении, а также для работы в УФ и ИК диапазонах.

* DoF – Depth of field – глубина резко изображаемого пространства
Каждый класс объективов делится на несколько групп в зависимости от задач применения. В основном речь идет о коррекции монохроматических аберраций, к примеру, План Ахромат и просто Ахромат будут отличаться наличием коррекции сферы, кривизны поля и дисторсии у объектива План Ахромат.
Дополнительно некоторые объективы имеют конструктивные отличия, к примеру, LD (Long distance) объективы – объективы с увеличенным рабочим расстоянием для работы с чашками Петри в биологии, или контроля объектов со сложной топографией в материаловедении. PH – объективы для фазового контраста с установленным фазовым кольцом (могут использоваться и в светлом поле, но светопропускание таких объективов ниже). OIL-объективы с использованием иммерсионного масла и т.д.

Поделиться в

Share on facebook
Share on vk
Share on telegram

Читайте также

90000 Aberration | optics | Britannica 90001 90002 90003 Aberration 90004, in optical systems, such as lenses and curved mirrors, the deviation of light rays through lenses, causing images of objects to be blurred. In an ideal system, every point on the object will focus to a point of zero size on the image. Practically, however, each image point occupies a volume of finite size and unsymmetrical shape, causing some blurring of the whole image. Unlike a plane mirror, which yields images free of aberrations, a lens is an imperfect image producer, becoming ideal only for rays passing through its centre parallel to the optical axis (a line through the centre, perpendicular to the lens surfaces).The equations developed for object-image relations in a lens having spherical surfaces are only approximate and deal only with paraxial rays- 90005 i.e., 90006 rays making only small angles with the optical axis. When light of only a single wavelength is present, there are five aberrations to be considered, called spherical aberration, coma, astigmatism, curvature of field, and distortion. A sixth aberration found in lenses (but not mirrors) -namely, chromatic aberration-results when light is not monochromatic (not of one wavelength).90007 90002 Read More on This Topic 90007 90002 optics: Lens aberrations 90007 90002 If a lens were perfect and the object were a single point of monochromatic light, then, as noted above, the light wave emerging from the … 90007 90002 In spherical aberration, rays of light from a point on the optical axis of a lens having spherical surfaces do not all meet at the same image point.Rays passing through the lens close to its centre are focused farther away than rays passing through a circular zone near its rim. For every cone of rays from an axial object point meeting the lens, there is a cone of rays that converges to form an image point, the cone being different in length according to the diameter of the circular zone. Wherever a plane at right angles to the optical axis is made to intersect a cone, the rays will form a circular cross section. The area of ​​the cross section varies with distance along the optical axis, the smallest size known as the circle of least confusion.The image most free of spherical aberration is found at this distance. 90007 90016 Encyclopædia Britannica, Inc. 90017 90002 Coma, so called because a point image is blurred into a comet shape, is produced when rays from an off-axis object point are imaged by different zones of the lens. In spherical aberration, the images of an on-axis object point that fall on a plane at right angles to the optical axis are circular in shape, of varying size, and superimposed about a common centre; in coma, the images of an off-axis object point are circular in shape, of varying size, but displaced with respect to each other.The accompanying diagram shows an exaggerated case of two images, one resulting from a central cone of rays and the other from a cone passing through the rim. The usual way for reducing coma is to employ a diaphragm to eliminate the outer cones of rays. 90007 90016 Encyclopædia Britannica, Inc. 90017 90002 Astigmatism, unlike spherical aberration and coma, results from the failure of a single zone of a lens to focus the image of an off-axis point at a single point. As shown in the three-dimensional schematic the two planes at right angles to one another passing through the optical axis are the meridian plane and the sagittal plane, the meridian plane being the one containing the off-axis object point.Rays not in the meridian plane, called skew rays, are focused farther away from the lens than those lying in the plane. In either case the rays do not meet in a point focus but as lines perpendicular to each other. Intermediate between these two positions the images are elliptical in shape. 90007 90016 Encyclopædia Britannica, Inc. 90017 Get exclusive access to content from our тисяча сімсот шістьдесят вісім First Edition with your subscription. Subscribe today 90002 Curvature of field and distortion refer to the location of image points with respect to one another.Even though the former three aberrations may be corrected for in the design of a lens, these two aberrations could remain. In curvature of field, the image of a plane object perpendicular to the optical axis will lie on a paraboloidal surface called the Petzval surface (after József Petzval, a Hungarian mathematician). Flat image fields are desirable in photography in order to match the film plane and projection when the enlarging paper or projection screen lie on a flat surface. Distortion refers to deformation of an image.There are two kinds of distortion, either of which may be present in a lens: barrel distortion, in which magnification decreases with distance from the axis, and pincushion distortion, in which magnification increases with distance from the axis. 90007 90002 The last aberration, chromatic aberration, is the failure of a lens to focus all colours in the same plane. Because the refractive index is least at the red end of the spectrum, the focal length of a lens in air will be greater for red and green than for blue and violet.Magnification is affected by chromatic aberration, being different along the optical axis and perpendicular to it. The first is called longitudinal chromatic aberration, and the second, lateral chromatic aberration. 90007 90016 Encyclopædia Britannica, Inc. 90017.90000 Optical aberrations 90001 90002 Unfortunately, there is no telescope or of any type of other optical instrument that is completely free of image aberrations. The perfect telescope does not exist. Even the eye has some aberrations. But it is always possible to develop optical systems which correct for particular aberrations. Often, it is also a matter the observer’s attitude: i.e. whether he accepts an optical system with certain aberrations, or whether he demands a high-end instrument which produces a virtually perfect image.90003 90002 Explanations of the most important aberrations in astronomical telescopes can be found on the following pages. 90003 90006 Spherical aberration 90007 Spherical aberration is an aberration that may occur in both the case of lens and mirrors. Here, light rays nearer the optical axis are refracted, or reflected, differently, from light rays further away from it. This means there are different focal planes for the various rays. In the case of a spherical lens, or a spherical mirror, this spherical aberration occurs because the angle of incidence further away from the optical axis is considerable higher than that close to the optical axis.In telescopes, this aberration is seen as a blurring of the image. The aberration is more serious at shorter focal lengths than at longer focal lengths. This aberration can be reduced by use of an aspherically curved lens or a parabolic mirror This means that the angle of incidence are not as high and therefore the light beams come together in one focal plane. 90002 When the Hubble Telescope was first launched into space, it was found that it suffered from spherical aberration and provided blurry images.A pair of ‘spectacles’ had to be made and fitted to it in space to correct for this error. 90003 90006 Chromatic aberration 90007 Chromatic aberration is a problem which lens, or refracting, telescopes suffer from. Light strikes the lens elements and is refracted by them — perhaps you can still remember something about this from physics lessons at school. Refraction is essential for the formation of an image. Blue light is refracted more than, say, red light. This means that the different wavelengths have different focal lengths.The refractive index of blue light is greater than that of red light. 90002 If one imagines the effect of this on the formation of an image of an object, then the blue light will be found at a different location than the red light. This means that the image produced is blurred. But not only that, it also means a difference in the magnification of different colours. In plain language, this means that the different image distances for the respective colours cause different image sizes for them. This means the production of annoying colour fringes in the image.90003 90002 Chromatic aberration can be quite well corrected by use of an achromatic doublet. Here, a positive biconvex lens is combined with a negative lens located behind it with greater dispersion. Thus partially compensates for the chromatic aberration. But even then there is some residual chromatic aberration. This residue is referred to as ‘secondary spectrum’. 90003 90002 Also this secondary spectrum can be corrected, in which you can still inserts an additional lens (usually again a plus lens).In reflecting telescopes occurs no chromatic aberration. 90003 90018 90006 90020 Coma 90021 90007 Coma is another image error caused mainly by the incident light beam falling obliquely, away from the optical axis. It is often produced by the combination of spherical aberration and astigmatism. Astigmatism is partly due to asymmetric light rays. In the diagram, the light beams generate asymmetric images. This gives rise to stars at the edge of the field of viewing exhibiting distortions that resemble comet tails.These have a fuzzy appearance and can not be focused. 90002 Telescopes with large aperture ratios tend to suffer particularly badly from coma. These are telescopes with aperture ratios of 1: 4 or 1: 5 up to about 1: 7. In other words, the aberration appears worse with particularly fast optics. Long focal length telescopes, with their smaller aperture ratios (e.g., 1:10), suffer much less from coma. Also, this error can be minimized if the lens is stopped down. It is always possible to use a coma corrector to achieve sharp images with fast optics however.90003 90006 Astigmatism 90007 90027 Astigmatism can be caused by the incident light beam hitting the telescope obliquely (oblique astigmatism). It can also occur due to distortions of the main mirror. But it is often caused by two different curvatures of mirrors or lenses generating different focal lengths. One bundle of rays would then be perpendicular to the other. Astigmatism can be seen in the Airy disk as an image distortion where it is longer in one axis than that perpendicular to it. The aberration can be minimized by stopping down the telescope.90003 90027 90003 90006 Field curvature 90007 Field curvature is related to oblique astigmatism. 90018 The image is formed on a curved surface, rather than on a flat pane, meaning you can never get the image focused simultaneously at both the centre and the edge. Stopping down the lens can also minimize this aberration. .90000 Optical Aberrations — Spherical Aberrations — Java Tutorial 90001 90002 Optical Aberrations — Spherical Aberrations — Java Tutorial 90003 90002 The most serious of the classical Seidel 90005 monochromatic lens aberrations 90006 that occurs with microscope objectives, spherical aberration, causes the specimen image to appear hazy or blurred and slightly out of focus. Ideally, an aberration-free objective converts a plane wavefront into a spherical wavefront, directing all light waves refracted by the lens to a common focal point in the center of the sphere to produce a perfect image.90003 90002 The effect of spherical aberration manifests itself in two ways: the center of the image remains more in focus than the edges, and the intensity of the edges falls relative to that of the center. This defect appears in both on-axis and off-axis image points. 90003 90002 The tutorial initializes with an image of the specimen (as seen through the microscope) appearing in a window on the left-hand side of the applet. Beneath the image window is a pull-down menu labeled 90005 Choose A Specimen 90006, used to select a new specimen.The 90005 Lens Shape 90006 slider is designed to control the tutorial by introducing an increasing amount of spherical aberration into the optical system. Moving the slider to the right also induces changes corresponding to the introduction of spherical aberration into the Airy diffraction pattern shown in the center of the applet window. Simultaneously, intensity is shifted away from the central peak of the point spread function and into the surrounding rings, which become far more prominent.These changes are also correlated with the ray trace diagram presented in the right-hand side of the applet. 90003 90002 Spherical aberration artifacts are encountered when light waves passing through the periphery of an uncorrected convex lens are not brought into focus with those passing through the center. Waves passing near the center of the lens are refracted only slightly, whereas waves passing near the periphery are refracted to a greater degree, producing a variety of different focal points along the optical axis.As a result, the peripheral waves come to a shorter focus (nearer the back of the lens or objective) than do rays traveling through the central or axial area. This is known as 90005 longitudinal 90006 or 90005 axial spherical aberration 90006. Axial aberration is generated by non-spherical wavefronts produced by the objective itself or by improper use of the objective. Some of the most common causes are failure to maintain the designated microscope tube length or the presence of substances between the objective and focal plane having a spurious refractive index.90003 90002 What is seen in the microscope is an image made by focusing the peripheral rays surrounded by the unfocused image of rays traveling through the central portion of the lens (or visa versa). This is one of the most serious resolution artifacts because the image of the specimen is spread out rather than being in sharp focus. The best focus, in an imperfectly or non-corrected lens, will be somewhere between the focal planes of the peripheral and axial rays, an area known as the 90005 disc of least confusion 90006 (illustrated as a point on the optical axis in the tutorial figure).Light rays refracted by the rim of the lens or pupil (peripheral rays) have the shortest focal length and produce the smallest image, whereas those that intersect at the paraxial focal point (axial rays) have begun to spread and do not represent the «best «focus. 90003 90002 Only when the specimen and image distances can be accurately specified can spherical aberration be optimally corrected. This artifact can be easily introduced by improper tube length caused by introduction of optical elements into the converging beam path of finite tube length microscopes.Spherical aberration can also occur when using improper «windows», such as cover glasses of nonstandard thickness (deviations from 0.17 millimeters) or poor quality immersion oil between the objective front lens and the cover glass. 90003 90002 90003 90002 The tutorial illustrates an exaggerated view of three hypothetical monochromatic light rays passing through a convex lens and converging on a series of focal points that lie in a progression along the optical axis (see the 90005 Ray Trace Diagram 90006).Changes to the shape of the lens with corresponding adjustments to the focal point position (s) can be made by utilizing the 90005 Lens Shape 90006 slider. Refraction of peripheral rays at the edge of the lens is greatest followed by those in the middle and then the rays in the center. The larger refraction by the outermost rays results in a focal point (focal point 1; see Figure 1) that occurs in front of the 90005 disc of least confusion 90006 and the focal points produced by rays passing closer to the center of the lens (focal points 2 in the center and 3, at the paraxial focal plane; Figure 1).Also illustrated in Figure 1 is a measure of the 90005 transverse 90006 spherical aberration, defined as the distance from the optical axis at which the peripheral rays intersect the plane of paraxial focus. As is evident in the figure, transverse aberration is measured in the plane of the image and is useful as an indicator of image blur. 90003 90002 Most of the discrepancy in focal points arises from approximations of the equivalency of sine and tangent values ​​of respective angles made to the 90005 90042 Gaussian lens equation 90043 90006 for a spherical refracting surface 90005: 90006 90003 90048 90049 n / s + n ‘ / s ‘= (n’-n) / r 90050 90051 90002 where 90005 n 90006 and 90005 n’ 90006 represent the refractive index of air and the glass comprising the lens, respectively, 90005 s 90006 and 90005 s ‘90006 are the object and image distance, and 90005 r 90006 is the radius of curvature of the lens.This expression determines the relative locations of images formed by the curved surface of a lens having radius 90005 r 90006 sandwiched between media of refractive indices 90005 n 90006 and 90005 n ‘90006. A refinement of this equation is often referred to as a higher-order (first, second, or third) correction by including terms in the cube of the aperture angle, resulting in a more refined calculation. Departure from an ideal spherical wave is expressed in terms of fractions of a wave, where a single wave is equal to the average wavelength of the illuminating light.This deviation is termed the 90005 optical path difference 90006, which must be less than one-quarter wavelength before a diffraction limited objective can be considered aberration-free. 90003 90002 As the objective numerical aperture is increased, changes in cover glass thickness or refractive index become critical, particularly with high magnification dry objectives where small changes in tube length quickly lead to inferior images. Although spherical aberration can be corrected to almost undetectable limits for visual observation with all types of objectives, the optical specification for any given lens must be fulfilled.For oil-immersion objectives having high numerical apertures, this usually means using a cover glass having a 0.17 millimeter thickness and immersion oil with a refractive index of 1.5180 (± 0.0004) at wavelengths of 546 and 589 nanometers. Complicating these conditions is the fact that for almost all materials, refractive index is a function of both wavelength and temperature. In cases where the exact properties of the cover glass and oil are specified, microscope manufacturers can correct spherical aberration for several values ​​of wavelength.90003 90002 90003 90002 One of the mechanisms used to eliminate spherical aberration in oil immersion objectives is to design the optics around specific pairs of conjugate points using a hemispherical and meniscus lens at the front of the objective. As illustrated in Figure 2, for a specimen observed at position 90005 P 90006 and surrounded by immersion oil of refractive index 90005 n 90006, there exists a conjugate point (90005 P (1) 90006) to eliminate spherical aberration in the first lens element ( the hemispherical lens).In this case, light rays emanating from point 90005 P 90006 leave the surface of the hemispherical front lens as if they originated at point 90005 P (1) 90006. The meniscus lens is ground with a surface radius centered on point 90005 P 90006 to form a second conjugate pair (90005 P (1) 90006 and 90005 P (2) 90006). Thus, light from the specimen a point 90005 P 90006 ultimately exits the meniscus lens as if it originated at point 90005 P (2) 90006, eliminating spherical aberration for the lens combination.90003 90002 Specimens mounted in Canada balsam or similar mounting media that have a refractive index approximating that of the cover glass are not prone to spherical aberration errors. However, this is not true for specimens mounted in physiological saline or other aqueous media with refractive indices significantly different from the cover glass. Even when focusing through thin layers of water only a few microns thick, significant aberrations are encountered that can induce dramatic asymmetries into the point spread function causing a non-uniform distribution above and below the focal plane.This concept is explored in the interactive tutorial linked below. 90003 90002 Spherical aberrations are very important in terms of the resolution of the lens because they affect the coincident imaging of points along the optical axis and degrade the performance of the lens, which will seriously affect specimen sharpness and clarity. These lens defects can be reduced by limiting the outer edges of the lens from exposure to light using diaphragms and also by utilizing aspherical lens surfaces within the system.However, a consequence of reducing aperture size in the microscope optical system is a concurrent reduction in the amount of light entering the system. Spherical aberration is usually corrected by employing glass elements (lens 90005 doublets 90006 or 90005 triplets 90006) cemented together. The glass elements are designed with different shapes of convexity and / or concavity to insure that the peripheral rays and axial rays, especially at the outer area of ​​the field of view, are brought into common focus.90003 90002 Until recent years, achromats were corrected spherically only for green light, although they were corrected chromatically for two wavelengths. Also, apochromats were corrected spherically for two wavelengths, blue and green, but were corrected chromatically for three wavelengths. The highest-quality modern microscope objectives address spherical aberrations in a number of ways including special lens-grinding techniques, improved glass formulations, and better control of optical pathways through use of multiple-lens elements.Currently, the highest quality objectives, planapochromats, are spherically corrected for four wavelengths, as are planfluorites (but not to quite as close a tolerance). 90003 90002 It is also possible for a user to inadvertently introduce spherical aberration into a well-corrected system. For example, when using high magnification, high numerical aperture dry objectives, the correct thickness of the cover glass (suggested to be 0.17 millimeters) is critical. Figure 3 illustrates the changes in half-width of the intensity distribution curve with changes in cover glass thickness.Even with high quality cover glasses having a tolerance of ± 10 micrometers, the half-width changes by more than a factor of two. As the objective numerical aperture is increased (above a value of 0.5), particularly with dry and water immersion lenses, selection of cover glasses for the correct thickness is particularly important. 90003 90002 90003 90002 High-quality oil immersion objectives perform optimally only when they are used with a cover glass thickness of 0.17 millimeters. To help alleviate cover glass variations, correction collars are often included on dry objectives to enable adjustment of intermediate lens elements to compensate for deviant cover glass thickness.Because focus may shift and the image may wonder during adjustment of the correction collar, the utilization of correction collars demands that the microscopist remain alert in order to reset the collar using appropriate image criteria. In addition, the insertion of accessories in the light path of finite tube length objectives may introduce aberrations, when the specimen is refocused, unless these accessories have been properly designed with additional optics. 90003 90114 Contributing Authors 90115 90002 90005 H.Ernst Keller 90006 — Carl Zeiss Inc., One Zeiss Dr., Thornwood, NY, 10594. 90003 90002 90005 Kenneth R. Spring 90006 — Scientific Consultant, Lusby, Maryland, 20657. 90003 90002 90005 John C. Long 90006 and 90005 Michael W . Davidson 90006 — National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310. 90003.90000 Optical Aberrations In Rifle Scopes 90001 90002 90003 Optical aberrations in rifle scopes 90004 90005 90002 All optical systems have what is called aberrations which is the reality that the image is imperfect due to unavoidable flaws. One should keep in mind there is no such thing as the perfect lens, and every lens has some degree of aberrations due to the compromises made during the design process. Aberration flaws are not caused by any physical or mechanical imperfections but rather from the optical system lens curvatures, and material types.We can determine the types of aberrations present in an optical system but it can be difficult to recognize them. 90005 90002 90005 90002 Aberrations are more pronounced in a zoom system because lens performance from low to high magnification is compromised as compared to fixed power systems. In the process of designing a new optical system aberrations are easily expressed in a computer design program, however, it is a more difficult task to recognize them in real-world observations. 90005 90002 90005 90002 Aberrations include: 90005 90002 90005 90018 90019 Field curvature 90020 90019 Distortion 90020 90019 Astigmatism 90020 90019 Spherical aberration 90020 90019 Coma 90020 90019 Chromatic aberration 90020 90031 90002 90005 90002 90003 Field curvature 90004 90005 90002 Aberrations most recognized in an optical system are distortion and field curvature.These two aberrations are both most pronounced in low magnification scopes. At low powers, the field angles are large which make it difficult to keep light rays to maintain the image plane to be flat and undistorted. 90005 90002 90005 90002 90005 90002 90005 90002 Field curvature is the geometric curved surface of the image plane. When a scope has field curvature different zones of a scope are in focus as compared to a flat plane such as a reticle. With field curvature, the center field image can be made sharp but as you look out toward the mid and edge of the field the image begins to blur.The effect of field curvature is that only one segment, such as the center of the field of an image is in focus while the edge of field starts to blur. 90005 90002 90005 90002 This is easy to see in a rifle scope which has a second focal plane reticle. At the second focal plane, the reticle has features such as the vertical and horizontal lines of the reticle. In a scope which exhibits field curvature, one can move the head laterally a small amount in the exit pupil and the center field and reticle will both maintain position together.If you move your head a bit while looking to the outer edge of the field, the image will move relative to the line of the reticle plane. So as you move your head the reticle moves at the edge of the field and does not move at the center field. Field curvature is very small at magnifications over about 15 power. 90005 90002 90005 90002 In low power scopes, field curvature can be directly observed by setting the scope on a steady surface and looking at a distance scene. Carefully make sure the center of the field is in focus.Notice the edge of field part of the image. If field curvature is significant you will be able to see some blurriness at the edges of the field. 90005 90002 90005 90002 90003 Distortion 90004 90005 90002 90005 90002 By definition, distortion is a change in magnification as a function of field. With no distortion, features do not change relative size at any place in the field as it happens with field curvature. If distortion is positive, features get larger as you move toward the edge of the field and is referred to as pincushion distortion.Negative distortion makes features smaller as you move toward the edge of the field and is referred to as Barrel distortion. 90005 90002 90005 90002 90005 90002 The difference between distortion and field curvature is that a distorted image is in focus at all points in the field of view. 90005 90002 90005 90002 90003 Astigmatism 90004 90005 90002 90005 90002 Astigmatism is similar to field curvature except the curved field has a different curvature in two different axes of the image.For example, the left to right axis of the image can have more or less field curvature than the top to bottom axis of the image. In geometric terms, an astigmatic focal plane is like the shape of a football where field curvature is like the shape of a basketball. 90005 90002 90005 90002 Riflescopes usually have some astigmatism which can be observed if it is significant. To see astigmatism point the scope at a target with vertical and horizontal lines that extend far enough to fill the entire field of view.A good target would be telephone pole and the connecting wires. If a scope had astigmatism a feature in one axis will have a different clarity than the axis 90 degrees apart. For example, the telephone pole would look sharp from top to bottom but the wires would blur out towards the ends or vice versa. 90005 90002 90005 90002 Regarding the design tradeoffs, a scope can be designed to have more field curvature and less astigmatism or less field curvature and more astigmatism. The degree of astigmatism is an image quality tradeoff in which a scope with some astigmatism can be considered a better design than one designed allowing relative more field curvature.90005 90002 90005 90002 90003 Spherical aberration 90004 90005 90002 90005 90002 Spherical aberration occurs in an optical system because the light that passes through the edge of a lens is refracted more than when it strikes the center. Spherical aberration causes all areas of v the field of view to appear not as sharp. Spherical aberration is harder to control as the objective lens diameter and magnification increases. With large objectives and high magnification, the objective lens system requires more complexity in terms of the number of lens elements to meet most performance goals.. The metric for spherical aberration is how well the scope resolves small details. Spherical aberration can be expressed in units such as lines per millimeter, inches at 100 yards, or arc seconds of angle. 90005 90002 90005 90002 Spherical aberration in a lens is shown below 90005 90002 Fa — Where edge of rays come to focus 90005 90002 Fb — The best overall image sharpness (circle of least confusion) 90005 90002 Fc — When center rays come to focus (paraxial focus) 90005 90002 90005 90002 The challenge is to design an objective for a high magnification rifle scope with as large an objective as possible in order to collect more light and also provide low spherical aberration.It must be kept in mind that some manufacturers are pushed to sell scopes with large apertures but have not implemented a design to reduce spherical aberration. These products provide more light but will have poorly resolved images if the objective design is simple. An example is that some manufacturers reduce cost by making a 40mm diameter objective to be 50mm without redesign to minimize manufacturing cost. Typically a 40mm objective can provide good images using a cemented doublet lens and a 50mm requires going to a triplet design if one keeps the spherical aberration the same between the two objectives.90005 90002 90005 90002 90003 Coma 90004 90005 90002 Coma aberrations are similar to astigmatism except comatic errors get equally worse in all areas of the field as you work your way out from the center to edge of the field. In other words, coma gets worse as the field increases. In riflescopes, coma is normally a small contributor to image clarity as its contribution is small compared to field curvature aberration. If coma is significant, one will see flares at the edge of the field.If the field consists of dots the outer dots will appear similar to a comet’s tail hence the term coma. 90005 90002 90005 90002 90005 90002 90003 Chromatic aberration 90004 90005 90002 90005 90002 Chromatic aberration is the inability for an optical system to focus all colors from an object at one point in an image. An optical design has always some residual effect of red, green, and blue colors not exactly coming together. Chromatic aberration appears at the edges or boundaries of object details as blue or yellow fringes of colors.Chromatic aberration is most easily seen when looking at a white object against a black background. 90005 90002 90005 90002 Chromatic aberration increases with magnification. In low power scopes, chromatic aberration is so small as not being noticeable. However, at magnification over 15 to 20 power, it is visible if not well controlled. High magnification optics can make use of low dispersion glass, referred to as ED glass, to help minimize this aberration but it is more expensive than the more common grades of glass.High power rifle and spotting scopes used for long-range observing are examples of product which require very significant control to reduce color aberrations. Chromatic aberration is important to control because it significantly reduces the ability to see fine details as well as give what is commonly referred to as false color. 90005 90002 90005 90002 90003 Summary 90004 90005 90002 90005 90002 Optical aberrations are unavoidable imperfections to an image. The challenge is to manage the aberrations to meet customers specifications as well as balance performance and manufacturing cost.As an optical system is being designed the engineer has to make decisions such as: should there be more elements or more exotic glass types, is the design goal to minimize product weight or length, or what demands are requiring optimization of certain performance parameters. Optical design is the same as other engineering tasks in that to improve performance 10% it can increase the cost 50%. With a given optical complexity, regarding the allowable number of lenses in a system, the engineer must balance all aberrations to maximize overall performance.90005 90002 90005 90002 One might want to compromise more field curvature at low power to provide exceptional image sharpness across the field at high power. Some aberrations such as coma and spherical aberration, if considered unacceptable in a design, can only be improved by adding elements to the objective and / or eyepiece. To provide the very best overall design with the minimum number of lenses is a balancing act requiring back and forth trials. However, the required effort to meet all performance goals has been considerably improved by using modern optical design programs.90005 .

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *