Автофокус – Автофокус фотоаппарата: что это и как это работает

Содержание

Контрастный и фазовый автофокус / Съёмка для начинающих / Уроки фотографии

Резкость — одна из важнейших составляющих качественной фотографии. Будучи достаточно резким, снимок может передать сюжет в мельчайших подробностях и деталях.

За резкость фотографии отвечает прежде всего фокусировка. О том, что это такое и как с ней работают современные фотоаппараты, мы сегодня и поговорим.

Немного теории и истории

Объектив фокусируется не на конкретном объекте, а на определённой дистанции. Объектив, как и любой оптический прибор (например, проектор, бинокль, микроскоп, увеличительное стекло), может быть сфокусирован только на определённом расстоянии. И только объекты, находящиеся на этой дистанции, будут в кадре резкими. На некоторых объективах даже предусмотрена специальная шкала, показывающая дистанцию фокусировки в метрах. Во время фокусировки в объективе туда-сюда двигается блок линз, подобно тому, как мы двигаем обычную лупу, разглядывая мелкие предметы: лупа покажет их резкими только тогда, когда будет находиться на нужном расстоянии от них.

Контрастный и фазовый автофокус

Nikon D810 / Nikon 85mm f/1.4D AF Nikkor

При наведении на резкость мы настраиваем объектив на определённую дистанцию фокусировки.

Nikon D810 / Nikon 85mm f/1.4D AF Nikkor

Ошибка с этим параметром грозит тем, что главный объект снимка получится нерезким.

Nikon D810 / Nikon 85mm f/1.4D AF Nikkor

Ошибка с этим параметром грозит тем, что главный объект снимка получится нерезким.

Интересное следствие из предыдущего пункта: если в кадре есть несколько объектов, которые расположены на разных дистанциях, то просто так на всех них сфокусироваться не получится. Но есть решение: уместить все объекты в глубину резкости. О том, как с ней работать, мы писали в отдельных уроках. Отметим, что на устройствах с очень маленьким по размеру сенсором (например, на смартфонах или компактных фотоаппаратах) глубина резкости будет очень большой. Именно поэтому на такие устройства легко сделать кадр, где резким получится как передний, так и задний план. Но по этой же причине с ними практически невозможно размыть фон на снимке.

Раньше фотографы самостоятельно фокусировали объектив. Сегодня функция ручной фокусировки сохранилась практически в любой фотокамере. А в зеркальной фототехнике она присутствует всегда. Минус ручной фокусировки в том, что для точного наведения на резкость вам потребуется много времени. А если ваш объект ещё и двигается, то ручная фокусировка превращается в настоящее испытание нервов, координации и зрения фотографа. Начиная с 80-х годов прошлого столетия стали развиваться системы автоматической фокусировки. Тогда компания Nikon представила свою первую камеру, наделённую автофокусом — Nikon F3AF.

Фотоаппарат Nikon F3AF — первая автофокусная зеркальная камера от Nikon.

Фотоаппарат Nikon F3AF — первая автофокусная зеркальная камера от Nikon.

Nikon FM10 — единственная зеркалка Nikon без автофокуса, которую можно до сих пор купить не только на вторичном рынке, но и в официальных магазинах. И да, к тому же это плёночная фотокамера.

Nikon FM10 — единственная зеркалка Nikon без автофокуса, которую можно до сих пор купить не только на вторичном рынке, но и в официальных магазинах. И да, к тому же это плёночная фотокамера.

C тех пор фотокамеры, наделённые функцией автофокуса, вытеснили более простые модели, лишённые её. Сегодня практически не выпускают фотоаппараты без автоматической фокусировки.

Nikon D7200 — современная камера с продвинутой системой автофокуса.

Nikon D7200 — современная камера с продвинутой системой автофокуса.

Можно говорить о том, что в наши дни автофокус стал неотъемлемой частью современной фотокамеры. Системы автоматической фокусировки совершенствуются с каждым годом, становясь всё быстрее, чувствительнее и гибче в работе.

Как работает автофокус?

Система автоматической фокусировки — это комплекс датчиков и механизмов. Аппарату нужно оценить будущий кадр, понять, на какой дистанции нужно сфокусироваться, а после этого ещё и соответствующим образом передвинуть блок линз в объективе так, чтобы он проецировал на сенсор резкое изображение.

По принципу работы различают два основных типа систем автофокуса.

Фазовая фокусировка

Проверенный временем тип автоматической фокусировки. Такой тип автофокуса является основным для зеркальных фотоаппаратов. Мы знаем, что ключевой элемент зеркальной камеры — это, собственно, зеркало. Благодаря ему мы можем видеть изображение, получаемое прямо через объектив аппарата. Но на этом функции зеркала не заканчиваются. И кстати, зеркало в камере не одно: там имеется целая система зеркал. Она устроена таким образом, что часть отражённого света отправляется в видоискатель, а часть попадает на специальный модуль, на котором установлены датчики. Современный модуль автофокуса может содержать десятки таких датчиков. Производители стараются располагать датчики так, чтобы они покрывали максимально возможную площадь кадра, дабы фотограф мог сфокусироваться на любом фрагменте будущей фотографии.

Перед фотографом эти маленькие датчики предстают как точки фокусировки в видоискателе. Думаю, они знакомы всем. Фотограф волен выбрать самостоятельно нужную точку (читай «отдельный датчик на модуле фокусировки»), а может доверить этот выбор автоматике аппарата.

Красный квадратик — выбранная точка фокусировки. Выбрав её, фотограф «приказал» фотокамере задействовать при фокусировке соответствующий ей датчик на модуле автофокуса.

Красный квадратик — выбранная точка фокусировки. Выбрав её, фотограф «приказал» фотокамере задействовать при фокусировке соответствующий ей датчик на модуле автофокуса.

Для анализа изображения каждый датчик оснащён собственной миниатюрной матрицей шириной в 1 пиксель и длиной в несколько десятков пикселей. При этом некоторые датчики оснащаются двумя такими матрицами, установленными крестом. Датчики крестового типа более чувствительны, поэтому они размещаются в ключевых местах, а вокруг них располагаются обычные. К примеру, по центру кадра почти всегда располагается датчик крестового типа. Фотографы знают, что центральная точка автофокуса — самая цепкая и чувствительная.

Модуль фазовой фокусировки фотоаппарата Nikon D750 оснащён 51 датчиком, 15 из которых крестового типа.

Модуль фазовой фокусировки фотоаппарата Nikon D750 оснащён 51 датчиком, 15 из которых крестового типа.

Модуль фазовой фокусировки фотоаппарата Nikon D750 оснащён 51 датчиком, 15 из которых крестового типа.

Система автофокуса вступает в работу тогда, когда вы нажали кнопку спуска наполовину. Также на некоторых аппаратах существует специальная кнопка активации автофокуса. Модуль фокусировки сообщает фотокамере, на какую дистанцию нужно сфокусировать объектив, чтобы получить резкое изображение в выбранной точке. Для этого запускается специальный моторчик, который двигает линзы объектива, наводясь на резкость.

Теперь фотокамере остаётся сфокусировать объектив, и когда это произойдёт, можно будет делать снимок.

Плюсы фазового типа фокусировки:

  • Скорость работы. Данный тип фокусировки является самым быстрым на сегодняшний день. Отметим, что скорость работы всей системы автофокуса будет зависеть и от прочих факторов (к примеру, от скорости привода фокусировки в объективе).
  • Высокая чувствительность. Датчики фазовой фокусировки могут работать даже при очень скудном освещении.
Nikon D810 / Nikon AF-S 50mm f/1.4G Nikkor

Слабое вечернее освещение не помешало мне быстро сфокусироваться там, где я пожелал.

Nikon D810 / Nikon AF-S 50mm f/1.4G Nikkor

Слабое вечернее освещение не помешало мне быстро сфокусироваться там, где я пожелал.

  • Высокая точность и скорость следящего автофокуса. Благодаря чувствительным датчикам и продвинутой электронике современные аппараты в режиме следящей фокусировки позволяют не терять из фокуса даже очень быстро двигающиеся объекты, следя за ними по всему полю кадра.
Nikon D810 / Nikon 70-200mm f/4G ED AF-S VR Nikkor 

Благодаря высокой скорости работы фазовый тип автофокуса отлично подходит для съёмки динамичных сюжетов, в том числе с участием детей и животных.

Nikon D810 / Nikon 70-200mm f/4G ED AF-S VR Nikkor

Благодаря высокой скорости работы фазовый тип автофокуса отлично подходит для съёмки динамичных сюжетов, в том числе с участием детей и животных.

Минусы фазового типа фокусировки:

  • Возможность работы только через оптический видоискатель. Ведь только когда зеркало фотокамеры опущено, свет попадает и в видоискатель, и на датчики фокусировки.
  • Из первого пункта вытекает второй: невозможность использования фазового автофокуса в момент записи видео.
  • Из-за сложности всей системы фокусировка фазового типа может страдать от бэк- и фронт-фокуса. При этом камера будет систематически фокусироваться чуть-чуть дальше объекта съёмки или немного перед ним. Итог один: сам объект, на котором камера фокусировалась, в итоге окажется немного нерезким. Проблема бэк- и фронт-фокуса решается настройкой оборудования в сервисном центре. В случае продвинутых фотокамер (начиная с Nikon D7200) настроить фокусировку можно самостоятельно прямо в меню аппарата.
  • Неполное покрытие датчиками фокусировки площади кадра. Наверняка вы замечали, что все точки фокусировки обычно расположены ближе к центру кадра, тогда как с краю нет ни одной. Это связано с конструктивными особенностями всей системы фазовой фокусировки. Тут общая закономерность проста: чем более продвинутая камера у вас в руках, тем, как правило, больше датчиков фокусировки в ней установлено, и тем большая площадь кадра ими покрыта. Впрочем, стоит сказать, что некоторые профессионалы часто используют вообще одну-единственную центральную точку фокусировки и другими почти не пользуются. Ведь центральная точка фокусировки самая чувствительная, а после фокусировки по центру кадра снимок всегда можно перекомпоновать.

Контрастный тип фокусировки

Этот тип фокусировки устроен проще: для него не нужен специальный отдельный модуль и система зеркал, ведь «датчиком фокусировки» выступает сама матрица фотоаппарата. Электроника камеры анализирует картинку, получаемую матрицей, и оценивает её контраст в выбранной точке. Если контраст не максимальный, она пытается перефокусировать объектив так, чтобы контраст увеличился. Так автоматика постепенно добивается максимальной детализации картинки в выбранной точке.

В современных зеркальных фотокамерах этот тип фокусировки используется при работе в режиме Live View. В беззеркальных же камерах он является основным.

Плюсы контрастного типа фокусировки:

  • Простота и надёжность конструкции. Для реализации этого типа фокусировки не требуется дополнительных датчиков, зеркал и прочего. Именно благодаря такой простой конструкции беззеркальные аппараты, где используется только контрастный автофокус, столь компактны: из них убрали систему зеркал и модуль фазовой фокусировки. К тому же, поскольку аппарат ориентируется не на показания отдельно расположенного модуля фокусировки, а непосредственно на матрицу фотокамеры, при контрастной фокусировке исключены случаи бэк- и фронт-фокуса.
  • Фокусироваться можно по всему полю кадра, а не только в пределах имеющихся точек фокусировки. Модули фазового автофокуса часто грешат тем, что все их (пусть и многочисленные) датчики находятся аккурат в центре кадра. Это не даёт сфокусироваться по краю снимка — там просто нет ни одной точки фокусировки. Таких проблем не знает контрастная фокусировка. Здесь мы можем выбрать любое место на плоскости будущего снимка для наводки на резкость (даже с самого края), ведь есть возможность задействовать в фокусировке любую область матрицы фотокамеры.
Экран Live View камеры Nikon D810. Точку контрастного автофокуса (красный квадратик в левом верхнем углу) можно перемещать по всему полю кадра, в том числе «загоняя» её впритык к краям кадра. Такого не позволит сделать фазовый автофокус.

Экран Live View камеры Nikon D810. Точку контрастного автофокуса (красный квадратик в левом верхнем углу) можно перемещать по всему полю кадра, в том числе «загоняя» её впритык к краям кадра. Такого не позволит сделать фазовый автофокус.

Но тут стоит сделать оговорку: в беззеркальных камерах функция контрастного автофокуса реализована так, что всё же выбор точек фокусировки несколько ограничен, они не покрывают абсолютно всей площади кадра.

  • Возможность реализации дополнительных функций фокусировки, таких как распознавание лиц.
  • Возможность использования автофокуса в момент видеозаписи. Однако пока эта возможность есть не во всех аппаратах, оснащённых контрастной фокусировкой.
  • Теоретически высокая точность фокусировки. Сам принцип контрастной фокусировки позволяет добиться идеального качества фокусировки. Однако касательно её точности есть ряд оговорок, зависящих от реализации системы в конкретных аппаратах. Об этом мы поговорим в «минусах».

Минусы контрастного типа фокусировки:

  • Медленная скорость работы. Наверняка все владельцы зеркалок замечали, что в режиме Live View камера фокусируется медленнее. Всему виной как раз контрастный автофокус, использующийся в этом режиме. Пускай с каждым следующим поколением фотокамер скорость работы фазового автофокуса увеличивается, пока что по этому критерию он уступает фазовому типу.
  • Требовательность к освещению. Скорость работы контрастной фокусировки упадёт ещё сильнее, если снимать при недостаточном освещении.
  • Практическая реализация контрастного автофокуса не всегда идеальна. Мы уже говорили о том, что практическое исполнение в различной фотоаппаратуре контрастного автофокуса не всегда раскрывает его теоретические достоинства. И вот ещё одна особенность: некоторые модели фотокамер предлагают фотографу фокусироваться не по конкретной точке изображения, а по крупной рамке, перемещаемой по плоскости кадра. Внутри неё может уместиться множество разных деталей, а значит, возможны и ошибки фокусировки: кто знает, на что именно внутри этой рамки захочет сфокусироваться камера?.. Поэтому недорогие беззеркалки (в которых такая ситуация и случается) не очень удобно использовать со светосильной оптикой. Прежде всего, они созданы для работы с универсальными китовыми объективами, не обладающими высокой светосилой. Поэтому, имея недорогую беззеркальную камеру, не спешите дополнять комплект светосильной портретной оптикой: вполне возможно, большинство ваших снимков будет не совсем резкими. C другой стороны, если фотокамера позволяет фокусироваться по очень малому участку кадра, наоборот, можно добиться точной наводки на резкость при работе со светосильной оптикой.
Экран фотокамеры Nikon D810. Красный прямоугольник — зона фокусировки контрастного автофокуса. Она достаточно маленькая для точной фокусировки даже со светосильной оптикой.

Экран фотокамеры Nikon D810. Красный прямоугольник — зона фокусировки контрастного автофокуса. Она достаточно маленькая для точной фокусировки даже со светосильной оптикой.

  • Ограниченные возможности по съёмке быстрого движения ввиду медленной работы всей системы контрастного автофокуса. Она просто не будет успевать за объектом в движении.

Автофокус в современных зеркальных фотоаппаратах. Когда какой использовать?

На сегодняшний день в зеркальных камерах используются оба типа фокусировки. Фазовый тип используется при обычной съёмке через оптический видоискатель, он быстр, точен, чувствителен. Переключаясь в режим Live View, вы задействуете контрастный автофокус. Таким образом, вы можете выбирать тот тип фокусировки, который наиболее оптимален в данной съёмочной ситуации. К примеру, я использую фазовый автофокус при съёмке динамичных сюжетов, при работе с недостаточным освещением. Во время съёмки натюрмортов или пейзажей я предпочитаю контрастный автофокус в режиме Live View: он позволяет фокусироваться в том месте кадра, в котором я захочу, без последующей перекомпоновки.

Вместо заключения хотелось бы напомнить о том, что в 90% случаев размытые кадры получаются не по вине техники и системы автофокуса, а по вине фотографа. Ведь мало иметь мощный инструмент, нужно научиться с ним работать. Автоматическая фокусировка имеет множество параметров и настроек, существует большое количество приёмов работы с автофокусом. О них мы поговорим в следующих уроках.

prophotos.ru

Автофокус — Википедия

Автофо́кус — адаптивная система, обеспечивающая автоматическую фокусировку объектива фотоаппарата, кинокамеры или видеокамеры на один или несколько объектов съёмки. Автофокус состоит из датчика, управляющей системы и привода, перемещающего оправу объектива или его отдельные линзы. Разновидностью автофокуса можно считать электронный дальномер без исполнительного механизма, но с индикацией направления фокусировки и её завершения. Для обозначения автофокуса обычно используется международная аббревиатура AF.

В меньшей степени понятие автофокуса относят к системам автоматической подстройки резкости проекционных аппаратов. Например, механические лекальные устройства фотоувеличителей, предназначенные для поддержания точной фокусировки при перемещении проекционной головки относительно основания, не принято называть автофокусом.

Технологии

Для автоматической фокусировки необходимо определить точное расстояние от фокальной плоскости до объекта съёмки. В зависимости от способа определения этого параметра все существующие системы автофокуса делятся на два основных типа: активные и пассивные[1]. Активные системы получили своё название из-за наличия элементов, взаимодействующих с объектом съёмки, таких как ультразвуковой или инфракрасный локатор[* 1]. Подобные устройства позволяют вычислить расстояние, на которое фокусируется объектив, при помощи эхолокации или триангуляции[2]. Ультразвуковой активный автофокус получил широкое распространение в фотоаппаратах одноступенного процесса Polaroid (англ. Sound Navigation Ranging, SONAR) и бытовых кино- и видеокамерах. Инфракрасный локатор автофокуса впервые использован в 1979 году в компактном фотоаппарате «Canon AF-35M»[3].

Фотоаппарат с инфракрасным локатором автофокуса «Canon AF-35M»

Активные системы не зависят от условий освещения и могут наводиться в полной темноте на объекты без контрастных деталей. Вместе с тем, они обладают рядом недостатков, одним из которых считается невозможность точной фокусировки, если между объектом и камерой есть прозрачное препятствие, например стекло. Излучения таких систем, не воспринимаемые человеком, могут пугать животных или представлять опасность для зрения. Кроме того, в связи с трудностями получения направленного пучка ультразвука, фокусировка на конкретный объект съёмки затруднена, часто срабатывая на ближайшее препятствие. По этим причинам активные системы вышли из употребления с появлением более совершенных пассивных. Пассивный автофокус основан на анализе световых пучков, попадающих внутрь камеры, и ничего не излучает в окружающее пространство.

Первая такая система, основанная на измерении света, прошедшего через оптический дальномер, разработана фирмой Leica Camera в 1970 году. Дальнейшие разработки этой технологии использовалось, главным образом в компактных любительских фотоаппаратах. Более широкое распространение получил способ под названием «Визитроник» (англ. Visitronic), который разработан компанией «Honeywell» для однообъективных зеркальных фотоаппаратов[4][5]. Система использовалась также в незеркальной аппаратуре, в том числе в единственном советском фотоаппарате с автофокусировкой «Эликон-автофокус»[5][6]. Современные системы основаны на измерении максимального контраста изображения, создаваемого объективом, или на сравнении противоположных частей пучка света, формирующего изображение точки. Эти технологии называются контрастным и фазовым автофокусом.

Контрастный автофокус

Контрастный автофокус может применяться в любых видеокамерах и цифровых фотоаппаратах, в том числе незеркальных. Принцип его работы основан на том, что микропроцессор камеры сравнивает контраст мелких деталей изображения, получаемого на матрице при разных положениях объектива[2]. Такая технология предполагает поиск наивысшего контраста перемещением объектива в обоих направлениях от положения точной наводки, чаще всего неоднократное.

В силу заложенного принципа быстродействие и точность такого автофокуса невысоки. До тех пор, пока процессор не вычислил максимум контраста и не перешёл его, двигателю даётся команда перемещать объектив ещё раз. Когда экстремум пройден, выполняется шаг назад, возвращающий оптику в пройденную точку, и процесс фокусировки прекращается. Задержка между нажатием на спуск и собственно съёмкой кадра, характерная для большинства компактных цифровых фотоаппаратов, объясняется именно «медленной» работой пассивного контрастного автофокуса. Кроме того, «следящая» фокусировка на движущиеся объекты невозможна. К достоинствам контрастного автофокуса относятся ненужность сложных юстировок оптического тракта и независимость от светосилы объектива. При этом может выбираться любая часть кадра, которая выделяется процессором, как сюжетно важная для фокусировки. Число таких возможных зон и их размер при контрастном автофокусе не ограничены.

Впервые контрастный автофокус был использован в бытовых видеокамерах и зеркальной плёночной фотоаппаратуре. В аналоговых видеокамерах контраст деталей вычисляется на основе частотного спектра получаемого видеосигнала. Первым серийным фотоаппаратом, использующим измерение контраста через объектив, в 1981 году стал «Pentax ME-F»[7][1]. При этом датчик, расположенный под вспомогательным зеркалом на дне камеры, сравнивал контраст двух изображений, получаемых светоделительной призмой[8]. Таким же образом действовал автофокус более поздних «Nikon F3 AF» и «Canon T80» (у «Никона» такой датчик расположен в пентапризме)[9][10]. В дальнейшем в зеркальной аппаратуре такая технология уступила место более совершенному фазовому автофокусу «Визитроник ТСЛ» (англ. Visitronic TCL, Through Camera Lens), ставшему прототипом современных систем[5][11]. Похожая технология «нулевого контраста» в 1963 году разработана в СССР М. Я. Шульманом[12][1].

Фазовый автофокус

Фазовый автофокус был впервые реализован в однообъективных зеркальных фотоаппаратах и его классическая конструкция требует отдельного оптического тракта, в котором расположен детектор фокусировки. Он устанавливается в нижней части камеры, а свет к нему попадает при помощи вспомогательного зеркала, закреплённого на шарнире под полупрозрачным основным. При этом длина оптического пути света от объектива до детектора в процессе визирования и фокусировки должна точно совпадать с длиной пути до фотоматериала или матрицы во время экспозиции[13]. Это условие достигается юстировкой фотоаппарата, от точности которой зависит точность работы автофокуса[* 2].

Детектор (на рисунке) состоит из конденсора 72, расположенного в фокальной плоскости объектива, и сенсора 8 с ПЗС-линейками 80 и 81. В процессе фокусировки сравниваются противоположные области 31 и 32 выходного зрачка 30 объектива[14]. Для этого в маске 75, на которой конденсор строит действительное изображение выходного зрачка объектива, устанавливаются два микрообъектива 76 и 77, формирующих на линейках 80 и 81 изображения объекта съёмки, видимого через разные половины выходного зрачка. Размер изображений ограничивается окном 70 рамки 71 конденсора. В случае, если объектив сфокусирован точно, изображения объекта находятся в центрах соседних ПЗС-линеек. Таким образом, сигналы, получаемые процессором с разных линеек, совпадают (находятся «в фазе»)[* 3]. При неточной фокусировке эти изображения из-за параллакса смещаются внутрь или наружу линеек в зависимости от направления ошибки, и сигналы перестают совпадать[15]. На основе разности фаз сигналов формируется команда для привода, производящего фокусировку[13].

В современной фотоаппаратуре, чаще всего, используются одновременно несколько таких детекторов, каждый из которых оценивает фокусировку разных частей кадра, позволяя наводить резкость не только по его центру. В зависимости от ситуации включается один из этих детекторов или сравниваются результаты измерения нескольких, работающих одновременно. Фазовый автофокус обеспечивает максимальное быстродействие, поскольку в отличие от контрастного не требует сравнения резкости для разных положений объектива, а величина и направление его перемещения известны сразу. В результате, фокусировка может завершиться одним движением оправы[* 4]. Точность фокусировки находится в прямой зависимости от расстояния (базиса) между сравниваемыми зонами 31 и 32 выходного зрачка. Следствием этого является потеря работоспособности фазового автофокуса при небольших относительных отверстиях объектива, когда оценочные зоны оказываются на краях или за пределами выходного зрачка, слишком узкого вследствие низкой светосилы объектива, или уменьшенного закрытой диафрагмой[14]. Поэтому автофокус этого типа должен использоваться в фотоаппаратуре совместно с прыгающей диафрагмой, закрывающейся до рабочего значения только в момент съёмки.

Современные камеры могут оснащаться дублирующими детекторами автофокуса, работоспособными при разных значениях светосилы объектива. При этом те, которые рассчитаны на максимальное отверстие (как правило, f/2,8 и более), обладают наибольшими точностью и быстродействием за счёт увеличенного базиса между оценочными зонами[13][15]. Так называемый крестообразный датчик автофокуса состоит из двух детекторов, ПЗС-линейки которых ориентированы перпендикулярно друг к другу. Такая конструкция делает систему одинаково эффективной для фокусировки на объекты с контурами, направленными в разные стороны[16]. Часто крестообразные детекторы рассчитаны на разную предельную светосилу для горизонтального и вертикального датчиков, обеспечивая универсальность[2]. Со светосильной оптикой работают оба датчика, а при использовании объективов с низкой светосилой работоспособным остаётся один из них, чаще всего горизонтальной ориентации. Самые совершенные профессиональные фотоаппараты оснащаются двойными крестообразными датчиками, расположенными под углом 45° друг к другу[16]. Каждая из 61 точки датчика анонсированного 1 февраля 2016 года фотоаппарата «Canon EOS-1D X Mark II» остаются работоспособными при низкой светосиле вплоть до f/8[17].

Гибридный автофокус

В процессе совершенствования систем автофокуса предпринимались попытки совместить активный и пассивный методы в одном устройстве. Многие современные компактные фотоаппараты и видеокамеры сочетают активный инфракрасный автофокус с пассивным контрастным[2]. Такие камеры оснащаются излучателем, расположенным на передней стенке и автоматически включающимся при недостатке освещения, когда эффективность контрастного автофокуса невысока. При этом, фотоприёмник, расположенный на корпусе или за объективом, на основе отражённого света определяет приблизительное расстояние до объекта съёмки, ускоряя работу пассивной системы или заменяя её.

Некоторые современные модели камерафонов в качестве инфракрасного прожектора используют маломощный полупроводниковый лазер, и вся гибридная система автофокуса строится по принципу лазерного дальномера. В сочетании с контрастным автофокусом и большой глубиной резкости сравнительно короткофокусного объектива, такое решение позволяет довести быстродействие до уровня фазового автофокуса зеркальных фотоаппаратов. Например, так называемый лазерный автофокус смартфона LG G3 полностью фокусируется за 0,276 секунды[18]. Однако, ограниченная мощность лазера, гарантирующая безопасность для зрения окружающих людей, обеспечивает работоспособность активного элемента автофокуса лишь на небольших дистанциях и во всём диапазоне неприменима без пассивной поддержки[18][19].

В некоторых случаях дополнительная подсветка не является частью активного автофокуса, обеспечивая более эффективную работу фазовой системы. По такому принципу работает инфракрасный прожектор, встраиваемый во внешние системные фотовспышки. Срабатывая одновременно с автофокусом камеры (за исключением следящего режима), подсветка создаёт на объекте съёмки дополнительную освещённость, обеспечивая работу системы даже в полной темноте. В некоторых камерах для этой цели используется встроенная фотовспышка в специальном «стробоскопическом» режиме (например, в «Pentax *ist Ds»). Некоторые системы подсветки автофокуса проецируют на объект контрастную «сетку», которая служит ориентиром для пассивной системы. Такое устройство подсветки используется, например, в фотоаппаратах «Pentax Z1p» и «Sony DSC F828».

Современные разработки гибридного автофокуса основаны на комбинации фазовой и контрастной технологий, позволяющей использовать достоинства обоих методов. Наиболее актуальны такие решения для беззеркальных фотоаппаратов, конструктивно непригодных для классического фазового автофокуса. Новейшие модели таких фотоаппаратов предусматривают установку фазовых детекторов непосредственно в матрицу Супер-ПЗС (англ. Cuper CCD EXR, Fujifilm Hybrid Focus)[20]. В настоящее время по такой технологии работают беззеркальные фотоаппараты серий «Fujifilm FinePix», «Nikon 1», «Samsung NX300», а также зеркальные «Canon EOS 650D» и «Canon EOS 70D»[21]. Фазовые детекторы, встроенные в матрицу, менее эффективны, чем классические, из-за небольшого базиса считывания, поэтому по сравнению с автофокусом зеркальных камер они менее эффективны и используются совместно с контрастным методом. В зеркальной аппаратуре, штатно оснащаемой фазовым автофокусом, контрастный используется в режиме Live View, когда основная система неработоспособна из-за поднятого зеркала.

Представленный в августе 2016 года фотоаппарат «Canon EOS 5D Mark IV» оснащён новейшей КМОП-матрицей с «двойными пикселями», которая впервые позволила приблизить эффективность автофокуса в режиме Live View к классическому фазовому[22]. Кроме того, такое устройство сенсора позволяет в небольших пределах корректировать фокусировку на уже готовых снимках[23][24].

Видео по теме

Приводы автофокуса

Первые системы автофокуса для перемещения оправы объектива использовали шаговые электродвигатели, расположенные в корпусе камеры. Такая конструкция пригодна для фотоаппаратов и видеокамер с несменной оптикой. Первые сменные объективы, разработанные для зеркальных фотоаппаратов, содержали датчики автофокуса, процессор с элементами питания и привод фокусировки в приливе оправы. Самым первым из них считается AF-Nikkor 4,5/80, разработанный в 1971 году, но так и не запущенный в серийное производство[9][12][25]. Похожую конструкцию имел зум Canon New FD 35—70/4 AF, в приливе которого размещался датчик автофокуса системы англ. Solid State Triangulation, SST и привод фокусировки[11][26]. Такие объективы могли работать с обычными фотоаппаратами, но фокусировка их была крайне медленной и неточной.

Развитие заобъективных датчиков и появление фазового принципа вынудили конструкторов размещать весь автофокус в корпусе фотоаппарата. При этом вращение привода передавалось в объектив передаточным механизмом с разъёмной муфтой, вмонтированной в байонет. Характерным примером можно считать так называемый «отвёрточный автофокус» Nikon, полумуфта которого оснащалась плоским шлицем[27].

Такой принцип оказался несовершенным, поскольку мощность встроенного в фотоаппарат двигателя была недостаточна для тяжёлой длиннофокусной оптики[28]. Устаревшие к середине 1980-х системы автофокуса с приводом, встроенным в объектив, оснащались сравнительно сложным редуктором, обладавшим значительным моментом инерции и снижавшим быстродействие. Решением стала технология компании Canon, встроившей специально разработанные кольцевые пьезоэлектрические двигатели в оправы всех сменных объективов.

Кольцевой двигатель привода автофокуса

Этот тип привода, впервые использованный в 1987 году в объективах для фотоаппарата «Canon EOS 650», позволил исключить редукторы, соединив статор и ротор непосредственно с кольцами оправы[5]. Кроме того, мощность и быстродействие мотора подбираются в соответствии с характеристиками конкретного объектива, повышая скорость. Ещё одно достоинство такого привода по сравнению с предыдущими типами — бесшумность. В течение последующего десятилетия большинство производителей фотоаппаратуры отказались от двигателей, встроенных в корпус фотоаппарата в пользу кольцевых моторов. Встроенные в объектив редукторные приводы (например, AFD-двигатели Canon) на сегодняшний день остаются только в бюджетной оптике любительского класса.

Компания Canon, разработавшая объективы с кольцевыми двигателями, присвоила технологии название «USM» (англ. Ultra Sonic Motor)[* 5]. Из-за патентных ограничений другие производители не имеют права использовать то же торговое название, поэтому присвоили своим разработкам другие обозначения. Nikon указывает маркировку «SWM» (англ. Silent Wave Motor), Pentax — «SDM» (англ. Super-sonic Direct-drive Motor), Samsung — «SSA» (англ. Super Sonic Actuator), Sony/Minolta — «SSM» (англ. Super Sonic Motor), Tamron — «USD» (англ. Ultrasonic Drive), а Sigma — «HSM» (англ. Hyper Sonic Motor). На выставке PMA 2007 Olympus продемонстрировал несколько объективов с новым ультразвуковым двигателем «SWD» (англ. Supersonic Wave Drive). Все эти обозначения являются лишь торговыми названиями, описывающими одну и ту же технологию с незначительными отличиями.

В 1996 году конструктором Масару Ямамото в фотоаппарате «Contax AX» была реализована оригинальная система автофокуса, не требующая перемещения объектива или его частей[29]. Вместо этого фокусировка осуществлялась сдвигом фильмового канала с плёнкой вдоль оптической оси объектива. Такая конструкция позволяет осуществлять автоматическую наводку на резкость любых объективов[30]. Принцип не получил дальнейшего развития из-за сложности и большого момента инерции перемещаемых частей.

Режимы фокусировки

Основным режимом работы автофокуса, доступным для любых его систем, считается покадровый (англ. One Shot, Single Servo Mode)[31]. В этом режиме автофокус срабатывает один раз, фокусируясь на объект съёмки, совпадающий с положением датчика в кадре. В большинстве фотоаппаратов автофокус срабатывает после поджатия спусковой кнопки наполовину, однако в настроечном меню некоторых моделей для этого можно назначить другую кнопку. После срабатывания автофокуса и достижения резкости привод автофокуса блокируется, прекращая дальнейшую работу до тех пор, пока не сработает затвор или не будет отпущена кнопка[32]. Захват фокуса и блокировка отображаются индикацией на дисплеях, которая дублируется звуковым сигналом. При смещении объекта из зоны резкости процедуру необходимо повторить. Съёмка движущихся объектов для контрастного автофокуса затруднена, но в бытовых видеокамерах следящий режим появился одновременно с пассивным автофокусом. В видеотехнике он работает постоянно и считается основным.

В фотоаппаратах, оснащённых фазовым автофокусом, применяется более совершенный алгоритм следящего режима, поскольку такой тип датчиков позволяет вычислять скорость и направление перемещения объекта съёмки[28]. Эта технология получила название упреждающий («предиктивный») автофокус и заранее фокусирует объектив на расстояние, соответствующее вычисленному положению объекта съёмки с учётом задержки срабатывания затвора[32]. Наблюдаемое в видоискателе изображение в этом режиме может казаться не в фокусе, потому что попадает в него только при срабатывании затвора и поднятом зеркале. При этом блокировка, в отличие от покадрового режима, никогда не срабатывает и фокусировка происходит непрерывно, отслеживая все перемещения объектов и изменения кадрировки. Поэтому индикация и звуковой сигнал в этих режимах не работают[32]. Технология поддерживается всеми современными камерами с фазовым автофокусом, однако у разных производителей он называется по разному: у Canon — AI Servo, у Nikon — Continuous servo AF. Среди фотолюбителей более востребован автоматический режим выбора метода фокусировки, когда микропроцессор самостоятельно принимает решение о включении наиболее подходящего способа: покадрового или следящего[31]. Последний включается, если детектор регистрирует движение объекта съёмки. В большинстве современных профессиональных и полупрофессиональных фотоаппаратов выбор покадрового или следящего режимов так или иначе взаимосвязан с режимом выбора точки (конкретного датчика) фокусировки в пределах кадра и режимами автоматического управления экспозицией.

В некоторых случаях, когда основной неподвижный объект не совпадает в кадре с положением датчика, необходима блокировка автофокуса (англ. AF-lock). Она автоматически срабатывает в покадровом режиме после поджатия спусковой кнопки и завершения фокусировки. После этого кадр можно перекомпоновать в соответствии с замыслом и произвести съёмку. Основной объект при этом получается резким, несмотря на то, что в момент съёмки датчик находится на других объектах или фоне. В следящем режиме блокировка включается отдельной кнопкой на фотоаппарате. В профессиональных моделях для этого предусматривается отдельная кнопка AF-stop, расположенная на оправе сменных объективов, как правило, длиннофокусных. Такая кнопка останавливает фокусировку, позволяя избежать ошибки в случае внезапного появления в кадре предметов на более близких дистанциях, или непредвиденной фокусировки на фон из-за смещения сюжетно важного объекта[28].

Ещё одна технология — ловушка автофокуса (англ. Focus Trap) — позволяет производить автоматическую съёмку при попадании движущегося объекта в фокус[33]. Режим доступен в большинстве зеркальных фотоаппаратов профессионального и потребительского уровня при соответствующих настройках. При нажатой спусковой кнопке затвор срабатывает в тот момент, когда датчик автофокуса подтверждает пересечение зоны резкости.

См. также

Примечания

  1. ↑ Инфракрасная подсветка, используемая в современных фотовспышках, служит для облегчения работы пассивного автофокуса в темноте, и не относится к активным системам
  2. ↑ Современные цифровые зеркальные фотоаппараты, оснащённые функцией Live View предусматривают программную коррекцию юстировки при помощи сравнения результатов работы фазового и контрастного автофокуса, последний из которых независим от механических погрешностей [1]
  3. ↑ Патент США 5053799 A [2]
  4. ↑ Современные алгоритмы фазовых систем предусматривают случаи неуверенного захвата фокуса малоконтрастных объектов в темноте, когда необходимы повторные циклы фокусировки
  5. ↑ Название «Micro USM» обозначает более дешёвый привод с аналогичным двигателем, работающим через редуктор [3]

Источники

  1. 1 2 3 Советское фото, 1986, с. 42.
  2. 1 2 3 4 Системы автофокуса цифровых фотоаппаратов (рус.). Ремонт фотоаппаратов. Фоторемонт (21 апреля 2010). Проверено 23 августа 2014.
  3. ↑ Фотоаппараты, 1984, с. 101.
  4. ↑ Фотоаппараты, 1984, с. 102.
  5. 1 2 3 4 Vladimir Dorofeev. История систем автофокуса (рус.). Info. Фотография для любителей. Проверено 24 августа 2014.
  6. ↑ Эликон-автофокус (1986) (рус.). Фотолюбитель (31 января 2014). Проверено 24 августа 2014. (недоступная ссылка)
  7. ↑ Фотокурьер, 2005, с. 7.
  8. ↑ Советское фото, 1982, с. 42.
  9. 1 2 Foo Leo. Introduction to the F3 AF (англ.). Modern Classic SLRs Series. Photography in Malaysia. Проверено 24 августа 2014.
  10. ↑ Canon T80 Camera (англ.). Main Features Part II. Photography in Malaysia. Проверено 24 августа 2014.
  11. 1 2 Фотоаппараты, 1984, с. 104.
  12. 1 2 Фотокурьер, 2005, с. 3.
  13. 1 2 3 Foto&video, 2008, с. 86.
  14. 1 2 Foto&video, 2008, с. 85.
  15. 1 2 Vladimir Dorofeev. Об автофокусе простыми словами (рус.). Info. Фотография для любителей (август 2010). Проверено 22 августа 2014.
  16. 1 2 Доступно о датчиках автофокуса (рус.). Info. Фотография для любителей (март 2012). Проверено 22 августа 2014.
  17. Dan Havlik. Fast & Furious: Canon Intros Speedy, 4K-Shooting 20.2MP, Full Frame EOS-1D X Mark II Pro DSLR (англ.). DSLR News. журнал «Shutterbug» (1 February 2016). Проверено 2 февраля 2016.
  18. 1 2 Лазерный автофокус на свой смартфон LG переставила с пылесоса (рус.). Физика. Новости информационных технологий (29 мая 2014). Проверено 1 августа 2015.
  19. Andrew Williams. How the LG G3 laser AF camera focus works (англ.). Opinions. Trusted Reviews (28 May 2014). Проверено 1 августа 2015.
  20. Дмитрий Крупский. Гибридный автофокус в матрицах Fujifilm (рус.). OnPhoto (14 февраля 2013). Проверено 23 августа 2014.
  21. Владимир Медведев. Пара мыслей про Canon 70D (рус.). LiveJournal (2 июля 2013). Проверено 23 августа 2014.
  22. ↑ Dual Pixel CMOS AF will change —High Image Quality” the basic assumptions about Digital SLRs (англ.). Canon. Проверено 26 августа 2016.
  23. ↑ Анонсированa камера Canon EOS 5D Mark IV (рус.). Новости. Fototips (25 августа 2016). Проверено 28 августа 2016.
  24. Stephen Shankland. Adobe to support advanced photo format debuting in Canon's hot new SLR (англ.). Photography. CNET (25 August 2016). Проверено 26 августа 2016.
  25. ↑ Фотомагазин №5, 1996, с. 16.
  26. ↑ AF Zoom New FD 35-70 f/4.0 (англ.). Canon FD Resources. Photography in Malaysia. Проверено 24 августа 2014.
  27. Константин. Автофокус. В чём разница между AF-S и AF объективами (рус.). Про Фото. Проверено 24 августа 2014.
  28. 1 2 3 Фотомагазин №7—8, 1999, с. 14.
  29. Борис Бакст. Contax АХ (рус.). Contax, рождённый в Японии. Фотомастерские РСУ (3 марта 2011). Проверено 28 сентября 2015.
  30. ↑ Фотомагазин, 2000, с. 15.
  31. 1 2 Режимы фокусировки One-Shot и AI-Servo: правила применения (рус.). On-line журнал о фотографии (3 октября 2012). Проверено 25 августа 2014.
  32. 1 2 3 Онищенко Александр. О работе автофокуса в камерах Nikon (рус.). LiveJournal. Проверено 25 августа 2014.
  33. Аркадий Шаповал. Фотохитрости (рус.). Мысли про Фото. Радожива (15 декабря 2012). Проверено 24 августа 2014.

Литература

  • Борис Бакст. Pentax и автофокус (рус.) // «Фотокурьер» : журнал. — 2005. — № 1/97. — С. 3—10.
  • Ю. Волков, Н. Капустина, В. Коротков. Системы автоматической фокусировки (рус.) // «Советское фото» : журнал. — 1986. — № 11. — С. 42. — ISSN 0371-4284.
  • Александр Доброславский. Автофокус — простота через сложность (рус.) // «Советское фото» : журнал. — 1982. — № 11. — С. 42—44. — ISSN 0371-4284.
  • Владимир Самарин. Система автофокусных камер Nikon (рус.) // «Фотомагазин» : журнал. — 1996. — № 5. — С. 16—22. — ISSN 1029-609-3.
  • Владимир Самарин. Contax — линейка, в которой нет любительских камер (рус.) // «Фотомагазин» : журнал. — 2000. — № 10. — С. 9—20. — ISSN 1029-609-3.
  • Андрей Шеклеин, Владимир Самарин. Анатомия и физиология современной зеркалки (рус.) // «Фотомагазин» : журнал. — 1999. — № 7—8. — С. 10—18. — ISSN 1029-609-3.
  • М. Я. Шульман. Фотоаппараты / Т. Г. Филатова. — Л.: «Машиностроение», 1984. — 142 с. — 100 000 экз.

Ссылки

wiki2.red

Следящий автофокус - как пользоваться

Что такое следящий автофокус

При съёмке движущихся объектов часто случается так, что модель в кадре оказывается размытой. Причина в том, что пока автофокус заблокирован, двигающийся объект съёмки оказывается за пределами зоны резкости. Чтобы этого избежать, используется следящий фокус, режим AF-C.

В этом режиме камера не фиксирует автофокус, а постоянно следит за двигающимся объектом, изменяя зону резкости. Nikon D850 использует мощный автофокус от флагманской модели Nikon D5 с прогнозирующей следящей фокусировкой. Если объект приближается или удаляется от вас, камера будет постоянно отслеживать его движение, прогнозируя дальнейшие действия.

Как снимать со следящим автофокусом NIKON D850 / 70.0-200.0 mm f/4.0 УСТАНОВКИ: ISO 100, F7.1, 1/125 с, 190.0 мм экв.

Чтобы переключиться в режим AF-C, нажмите кнопку выбора режима автофокуса, которая находится рядом с байонетом объектива. Затем с помощью заднего колеса управления измените режим с AF-S на AF-C. Нажав кнопку выбора режима автофокуса и прокручивая переднее колесо управления, вы можете выбрать режим слежения — по одной точке, по группе точек или 3D слежение.

Технологии следящего фокуса являются одними из самых сложных, ведь камера должна понимать, за каким объектом следовать. Для чёткого определения объекта при съёмке Nikon D850 использует целый спектр передовых технологий, вплоть до искусственного интеллекта.

Как указать камере объект, за которым необходимо следить

Переключившись в режим следящего фокуса, важно правильно задать объект съёмки. Для этого в Nikon D850 есть целый набор инструментов, подходящих для разнообразных сцен. В профессиональной фотографии это важно, поскольку позволяет упростить съёмку сложных кадров. А сцен может быть очень много! Это и бегущие спортсмены, и проезжающие автомобили, и двигающиеся люди. Чем более серьезные технологии используются, тем проще сделать кадр, о котором раньше вы не могли и мечтать ввиду технических ограничений камеры.

Как снимать со следящим автофокусом NIKON D850 / 70.0-200.0 mm f/4.0 УСТАНОВКИ: ISO 400, F7.1, 1/1250 с, 135.0 мм экв.

В любом режиме съёмки основа всегда одна — это точка фокусировки, чёрный квадрат в экране видоискателя или зелёный/красный квадрат на экране Live View. Мы сосредоточимся на режиме AF-C с использованием фазового автофокуса через видоискатель.

С помощью джойстика или селектора вы можете переместить точку фокусировки в ту часть кадра, где находится двигающийся объект. Именно по этой точке камера и будет фокусироваться. Фокусировка по одной точке может показаться простой, но на самом деле это самый трудоёмкий приём следящего фокуса. Ведь в этом случае приходится постоянно удерживать вместе объект съёмки и точку фокусировки в видоискателе. Если точка фокусировки съедет, например, на фон, то нужный вам объект съёмки окажется размытым.

Режим одиночной точки фокуса подходит для простых сюжетов, где все важные для кадра объекты находятся в зоне резкости. Фокусироваться по динамической зоне или группе точек лучше в том случае, когда в кадре достаточно крупный объект (или если он быстро двигается и выходит за пределы одиночной точки фокусировки).

Чем крупнее объект, тем больше точек фокусировки нужно использовать. Если вы снимаете, например, скачущих коней в отдалении, используйте динамическую зону АФ с девятью точками, а для автомобиля вблизи — с 25 точками. Так камера поймёт границы отслеживаемого объекта и сможет держать все важные элементы в фокусе. Кроме этого, в режиме динамической зоны автофокуса можно задействовать 72 точки для хаотически движущихся объектов или 153 точки для объектов, которые трудно удержать в видоискателе (например, при съёмке птиц).

Как снимать со следящим автофокусом NIKON D850 / 70.0-200.0 mm f/4.0 УСТАНОВКИ: ISO 31, F14, 1/30 с, 175.0 мм экв.

Режим 3D отслеживания отличается от остальных. В нём камера сама определяет движущийся объект и следит за ним, сдвигая точку фокусировки в нужную часть кадра. Если вам кажется, что камера ошиблась со слежением, вы можете скорректировать точку фокусировки джойстиком или селектором, и камера продолжит отслеживать объект съёмки. Правда, если в кадре находится несколько двигающихся объектов, мало отличающихся по цвету, яркости или форме, если слишком темно или недостаточно контраста, то камера может «потеряться». В этом случае лучше используйте фокусировку по группе точек — она менее точна, но более надёжна.

В каких сюжетах нужен следящий автофокус

Главное предназначение следящего фокуса — съёмка движущихся объектов. Это очень актуально в спортивной и репортажной фотографии. И несмотря на то, что в путешествиях следящий фокус используется не так часто, даже travel-фотографу он может иногда пригодиться.

Например, на фестивале Эл-Ойын проходили скачки. Приз — трактор в полном обвесе. Побороться за ценный приз приехали лучшие всадники. Чтобы передать динамику скачек, я снимал с проводкой, размывая в движении задний план.

Как снимать со следящим автофокусом NIKON D850 / 70.0-200.0 mm f/4.0 УСТАНОВКИ: ISO 100, F16, 1/30 с, 200.0 мм экв.

При съёмке портретов в работе с моделями чаще всего используются статичные позы. Они помогают фотографу сфокусироваться: выбрать точку съёмки на глазах и сделать несколько кадров. Однажды я попробовал поступить иначе: во время съёмок в высокогорьях на закате предложил модели пробежаться, а не просто стоять на месте. Я переключился в режим следящего фокуса, а модель бегала по высокогорной степи, крутилась и прыгала. Так получились атмосферные, динамичные снимки.

Как снимать со следящим автофокусом NIKON D850 / 70.0-200.0 mm f/4.0 УСТАНОВКИ: ISO 100, F4, 1/640 с, 135.0 мм экв.

Практические советы

При съёмке движущихся объектов снимайте сериями. Nikon D850 позволяет делать 7 кадров в секунду, а с батарейным блоком — 9 кадров в секунду. С такой частотой съмёки поймать идеальный кадр намного легче.

Как снимать со следящим автофокусом NIKON D850 / 70.0-200.0 mm f/4.0 УСТАНОВКИ: ISO 100, F7.1, 1/160 с, 200.0 мм экв.

Также при съёмке движущихся объектов, особенно если вы снимаете «с проводкой», пригодится объектив со стабилизатором. С ним вы уменьшите количество смазанных кадров во время съёмки с рук. К тому же, стабилизация помогает автофокусу работать стабильнее и не терять объект съёмки из-за тряски. С учётом огромного разрешения матрицы Nikon D850 шансы получить «шевелёнку» очень высоки. Кстати, для таких съёмок может быть разумно снимать в меньшем разрешении. Так, Nikon D850, имея полное разрешение в 45,4 мегапикселя, позволяет уменьшить размер снимков до 25 или 11 мегапикселей. Дополнительным плюсом этого станет то, что буфер вместит большее количество снимков.

Как снимать со следящим автофокусом NIKON D850 / 70.0-200.0 mm f/4.0 УСТАНОВКИ: ISO 100, F7.1, 1/500 с, 200.0 мм экв.

Многие профессиональные фотографы объединяют режим следящего фокуса с кнопкой AF-ON, а автофокусировку по кнопке спуска вообще отключают. Этот приём требует некоторой сноровки, но он намного удобнее обычной фокусировки по кнопке спуска. Дело в том, что при единичном нажатии AF-ON вы получите статичный фокус, а при постоянном нажатии — следящий. При этом в момент нажатия кнопки спуска фокус не сбивается.

Итоги

Следящий автофокус в Nikon D850 — это мощная функция, которая подойдёт и для репортажной фотографии, и для спорта, и даже для портретов. Не думайте, что если вы снимаете только статичные кадры, вам не требуется следящий фокус — лучше попробуйте добавить динамики в свои снимки. Камера больше не является вашим техническим ограничителем — используйте её возможности и развивайтесь. Если немного потренироваться с кнопкой AF-ON, то вряд ли вы вообще когда-либо вернётесь в режим AF-S.

prophotos.ru

Автофокус — Википедия. Что такое Автофокус

Автофо́кус — адаптивная система, обеспечивающая автоматическую фокусировку объектива фотоаппарата, кинокамеры или видеокамеры на один или несколько объектов съёмки. Автофокус состоит из датчика, управляющей системы и привода, перемещающего оправу объектива или его отдельные линзы. Разновидностью автофокуса можно считать электронный дальномер без исполнительного механизма, но с индикацией направления фокусировки и её завершения. Для обозначения автофокуса обычно используется международная аббревиатура AF.

В меньшей степени понятие автофокуса относят к системам автоматической подстройки резкости проекционных аппаратов. Например, механические лекальные устройства фотоувеличителей, предназначенные для поддержания точной фокусировки при перемещении проекционной головки относительно основания, не принято называть автофокусом.

Технологии

Для автоматической фокусировки необходимо определить точное расстояние от фокальной плоскости до объекта съёмки. В зависимости от способа определения этого параметра все существующие системы автофокуса делятся на два основных типа: активные и пассивные[1]. Активные системы получили своё название из-за наличия элементов, взаимодействующих с объектом съёмки, таких как ультразвуковой или инфракрасный локатор[* 1]. Подобные устройства позволяют вычислить расстояние, на которое фокусируется объектив, при помощи эхолокации или триангуляции[2]. Ультразвуковой активный автофокус получил широкое распространение в фотоаппаратах одноступенного процесса Polaroid (англ. Sound Navigation Ranging, SONAR) и бытовых кино- и видеокамерах. Инфракрасный локатор автофокуса впервые использован в 1979 году в компактном фотоаппарате «Canon AF-35M»[3].

Фотоаппарат с инфракрасным локатором автофокуса «Canon AF-35M»

Активные системы не зависят от условий освещения и могут наводиться в полной темноте на объекты без контрастных деталей. Вместе с тем, они обладают рядом недостатков, одним из которых считается невозможность точной фокусировки, если между объектом и камерой есть прозрачное препятствие, например стекло. Излучения таких систем, не воспринимаемые человеком, могут пугать животных или представлять опасность для зрения. Кроме того, в связи с трудностями получения направленного пучка ультразвука, фокусировка на конкретный объект съёмки затруднена, часто срабатывая на ближайшее препятствие. По этим причинам активные системы вышли из употребления с появлением более совершенных пассивных. Пассивный автофокус основан на анализе световых пучков, попадающих внутрь камеры, и ничего не излучает в окружающее пространство.

Первая такая система, основанная на измерении света, прошедшего через оптический дальномер, разработана фирмой Leica Camera в 1970 году. Дальнейшие разработки этой технологии использовалось, главным образом в компактных любительских фотоаппаратах. Более широкое распространение получил способ под названием «Визитроник» (англ. Visitronic), который разработан компанией «Honeywell» для однообъективных зеркальных фотоаппаратов[4][5]. Система использовалась также в незеркальной аппаратуре, в том числе в единственном советском фотоаппарате с автофокусировкой «Эликон-автофокус»[5][6]. Современные системы основаны на измерении максимального контраста изображения, создаваемого объективом, или на сравнении противоположных частей пучка света, формирующего изображение точки. Эти технологии называются контрастным и фазовым автофокусом.

Контрастный автофокус

Контрастный автофокус может применяться в любых видеокамерах и цифровых фотоаппаратах, в том числе незеркальных. Принцип его работы основан на том, что микропроцессор камеры сравнивает контраст мелких деталей изображения, получаемого на матрице при разных положениях объектива[2]. Такая технология предполагает поиск наивысшего контраста перемещением объектива в обоих направлениях от положения точной наводки, чаще всего неоднократное.

В силу заложенного принципа быстродействие и точность такого автофокуса невысоки. До тех пор, пока процессор не вычислил максимум контраста и не перешёл его, двигателю даётся команда перемещать объектив ещё раз. Когда экстремум пройден, выполняется шаг назад, возвращающий оптику в пройденную точку, и процесс фокусировки прекращается. Задержка между нажатием на спуск и собственно съёмкой кадра, характерная для большинства компактных цифровых фотоаппаратов, объясняется именно «медленной» работой пассивного контрастного автофокуса. Кроме того, «следящая» фокусировка на движущиеся объекты невозможна. К достоинствам контрастного автофокуса относятся ненужность сложных юстировок оптического тракта и независимость от светосилы объектива. При этом может выбираться любая часть кадра, которая выделяется процессором, как сюжетно важная для фокусировки. Число таких возможных зон и их размер при контрастном автофокусе не ограничены.

Впервые контрастный автофокус был использован в бытовых видеокамерах и зеркальной плёночной фотоаппаратуре. В аналоговых видеокамерах контраст деталей вычисляется на основе частотного спектра получаемого видеосигнала. Первым серийным фотоаппаратом, использующим измерение контраста через объектив, в 1981 году стал «Pentax ME-F»[7][1]. При этом датчик, расположенный под вспомогательным зеркалом на дне камеры, сравнивал контраст двух изображений, получаемых светоделительной призмой[8]. Таким же образом действовал автофокус более поздних «Nikon F3 AF» и «Canon T80» (у «Никона» такой датчик расположен в пентапризме)[9][10]. В дальнейшем в зеркальной аппаратуре такая технология уступила место более совершенному фазовому автофокусу «Визитроник ТСЛ» (англ. Visitronic TCL, Through Camera Lens), ставшему прототипом современных систем[5][11]. Похожая технология «нулевого контраста» в 1963 году разработана в СССР М. Я. Шульманом[12][1].

Фазовый автофокус

Фазовый автофокус был впервые реализован в однообъективных зеркальных фотоаппаратах и его классическая конструкция требует отдельного оптического тракта, в котором расположен детектор фокусировки. Он устанавливается в нижней части камеры, а свет к нему попадает при помощи вспомогательного зеркала, закреплённого на шарнире под полупрозрачным основным. При этом длина оптического пути света от объектива до детектора в процессе визирования и фокусировки должна точно совпадать с длиной пути до фотоматериала или матрицы во время экспозиции[13]. Это условие достигается юстировкой фотоаппарата, от точности которой зависит точность работы автофокуса[* 2].

Детектор (на рисунке) состоит из конденсора 72, расположенного в фокальной плоскости объектива, и сенсора 8 с ПЗС-линейками 80 и 81. В процессе фокусировки сравниваются противоположные области 31 и 32 выходного зрачка 30 объектива[14]. Для этого в маске 75, на которой конденсор строит действительное изображение выходного зрачка объектива, устанавливаются два микрообъектива 76 и 77, формирующих на линейках 80 и 81 изображения объекта съёмки, видимого через разные половины выходного зрачка. Размер изображений ограничивается окном 70 рамки 71 конденсора. В случае, если объектив сфокусирован точно, изображения объекта находятся в центрах соседних ПЗС-линеек. Таким образом, сигналы, получаемые процессором с разных линеек, совпадают (находятся «в фазе»)[* 3]. При неточной фокусировке эти изображения из-за параллакса смещаются внутрь или наружу линеек в зависимости от направления ошибки, и сигналы перестают совпадать[15]. На основе разности фаз сигналов формируется команда для привода, производящего фокусировку[13].

В современной фотоаппаратуре, чаще всего, используются одновременно несколько таких детекторов, каждый из которых оценивает фокусировку разных частей кадра, позволяя наводить резкость не только по его центру. В зависимости от ситуации включается один из этих детекторов или сравниваются результаты измерения нескольких, работающих одновременно. Фазовый автофокус обеспечивает максимальное быстродействие, поскольку в отличие от контрастного не требует сравнения резкости для разных положений объектива, а величина и направление его перемещения известны сразу. В результате, фокусировка может завершиться одним движением оправы[* 4]. Точность фокусировки находится в прямой зависимости от расстояния (базиса) между сравниваемыми зонами 31 и 32 выходного зрачка. Следствием этого является потеря работоспособности фазового автофокуса при небольших относительных отверстиях объектива, когда оценочные зоны оказываются на краях или за пределами выходного зрачка, слишком узкого вследствие низкой светосилы объектива, или уменьшенного закрытой диафрагмой[14]. Поэтому автофокус этого типа должен использоваться в фотоаппаратуре совместно с прыгающей диафрагмой, закрывающейся до рабочего значения только в момент съёмки.

Современные камеры могут оснащаться дублирующими детекторами автофокуса, работоспособными при разных значениях светосилы объектива. При этом те, которые рассчитаны на максимальное отверстие (как правило, f/2,8 и более), обладают наибольшими точностью и быстродействием за счёт увеличенного базиса между оценочными зонами[13][15]. Так называемый крестообразный датчик автофокуса состоит из двух детекторов, ПЗС-линейки которых ориентированы перпендикулярно друг к другу. Такая конструкция делает систему одинаково эффективной для фокусировки на объекты с контурами, направленными в разные стороны[16]. Часто крестообразные детекторы рассчитаны на разную предельную светосилу для горизонтального и вертикального датчиков, обеспечивая универсальность[2]. Со светосильной оптикой работают оба датчика, а при использовании объективов с низкой светосилой работоспособным остаётся один из них, чаще всего горизонтальной ориентации. Самые совершенные профессиональные фотоаппараты оснащаются двойными крестообразными датчиками, расположенными под углом 45° друг к другу[16]. Каждая из 61 точки датчика анонсированного 1 февраля 2016 года фотоаппарата «Canon EOS-1D X Mark II» остаются работоспособными при низкой светосиле вплоть до f/8[17].

Гибридный автофокус

В процессе совершенствования систем автофокуса предпринимались попытки совместить активный и пассивный методы в одном устройстве. Многие современные компактные фотоаппараты и видеокамеры сочетают активный инфракрасный автофокус с пассивным контрастным[2]. Такие камеры оснащаются излучателем, расположенным на передней стенке и автоматически включающимся при недостатке освещения, когда эффективность контрастного автофокуса невысока. При этом, фотоприёмник, расположенный на корпусе или за объективом, на основе отражённого света определяет приблизительное расстояние до объекта съёмки, ускоряя работу пассивной системы или заменяя её.

Некоторые современные модели камерафонов в качестве инфракрасного прожектора используют маломощный полупроводниковый лазер, и вся гибридная система автофокуса строится по принципу лазерного дальномера. В сочетании с контрастным автофокусом и большой глубиной резкости сравнительно короткофокусного объектива, такое решение позволяет довести быстродействие до уровня фазового автофокуса зеркальных фотоаппаратов. Например, так называемый лазерный автофокус смартфона LG G3 полностью фокусируется за 0,276 секунды[18]. Однако, ограниченная мощность лазера, гарантирующая безопасность для зрения окружающих людей, обеспечивает работоспособность активного элемента автофокуса лишь на небольших дистанциях и во всём диапазоне неприменима без пассивной поддержки[18][19].

В некоторых случаях дополнительная подсветка не является частью активного автофокуса, обеспечивая более эффективную работу фазовой системы. По такому принципу работает инфракрасный прожектор, встраиваемый во внешние системные фотовспышки. Срабатывая одновременно с автофокусом камеры (за исключением следящего режима), подсветка создаёт на объекте съёмки дополнительную освещённость, обеспечивая работу системы даже в полной темноте. В некоторых камерах для этой цели используется встроенная фотовспышка в специальном «стробоскопическом» режиме (например, в «Pentax *ist Ds»). Некоторые системы подсветки автофокуса проецируют на объект контрастную «сетку», которая служит ориентиром для пассивной системы. Такое устройство подсветки используется, например, в фотоаппаратах «Pentax Z1p» и «Sony DSC F828».

Современные разработки гибридного автофокуса основаны на комбинации фазовой и контрастной технологий, позволяющей использовать достоинства обоих методов. Наиболее актуальны такие решения для беззеркальных фотоаппаратов, конструктивно непригодных для классического фазового автофокуса. Новейшие модели таких фотоаппаратов предусматривают установку фазовых детекторов непосредственно в матрицу Супер-ПЗС (англ. Cuper CCD EXR, Fujifilm Hybrid Focus)[20]. В настоящее время по такой технологии работают беззеркальные фотоаппараты серий «Fujifilm FinePix», «Nikon 1», «Samsung NX300», а также зеркальные «Canon EOS 650D» и «Canon EOS 70D»[21]. Фазовые детекторы, встроенные в матрицу, менее эффективны, чем классические, из-за небольшого базиса считывания, поэтому по сравнению с автофокусом зеркальных камер они менее эффективны и используются совместно с контрастным методом. В зеркальной аппаратуре, штатно оснащаемой фазовым автофокусом, контрастный используется в режиме Live View, когда основная система неработоспособна из-за поднятого зеркала.

Представленный в августе 2016 года фотоаппарат «Canon EOS 5D Mark IV» оснащён новейшей КМОП-матрицей с «двойными пикселями», которая впервые позволила приблизить эффективность автофокуса в режиме Live View к классическому фазовому[22]. Кроме того, такое устройство сенсора позволяет в небольших пределах корректировать фокусировку на уже готовых снимках[23][24].

Приводы автофокуса

Первые системы автофокуса для перемещения оправы объектива использовали шаговые электродвигатели, расположенные в корпусе камеры. Такая конструкция пригодна для фотоаппаратов и видеокамер с несменной оптикой. Первые сменные объективы, разработанные для зеркальных фотоаппаратов, содержали датчики автофокуса, процессор с элементами питания и привод фокусировки в приливе оправы. Самым первым из них считается AF-Nikkor 4,5/80, разработанный в 1971 году, но так и не запущенный в серийное производство[9][12][25]. Похожую конструкцию имел зум Canon New FD 35—70/4 AF, в приливе которого размещался датчик автофокуса системы англ. Solid State Triangulation, SST и привод фокусировки[11][26]. Такие объективы могли работать с обычными фотоаппаратами, но фокусировка их была крайне медленной и неточной.

Развитие заобъективных датчиков и появление фазового принципа вынудили конструкторов размещать весь автофокус в корпусе фотоаппарата. При этом вращение привода передавалось в объектив передаточным механизмом с разъёмной муфтой, вмонтированной в байонет. Характерным примером можно считать так называемый «отвёрточный автофокус» Nikon, полумуфта которого оснащалась плоским шлицем[27].

Такой принцип оказался несовершенным, поскольку мощность встроенного в фотоаппарат двигателя была недостаточна для тяжёлой длиннофокусной оптики[28]. Устаревшие к середине 1980-х системы автофокуса с приводом, встроенным в объектив, оснащались сравнительно сложным редуктором, обладавшим значительным моментом инерции и снижавшим быстродействие. Решением стала технология компании Canon, встроившей специально разработанные кольцевые пьезоэлектрические двигатели в оправы всех сменных объективов.

Кольцевой двигатель привода автофокуса

Этот тип привода, впервые использованный в 1987 году в объективах для фотоаппарата «Canon EOS 650», позволил исключить редукторы, соединив статор и ротор непосредственно с кольцами оправы[5]. Кроме того, мощность и быстродействие мотора подбираются в соответствии с характеристиками конкретного объектива, повышая скорость. Ещё одно достоинство такого привода по сравнению с предыдущими типами — бесшумность. В течение последующего десятилетия большинство производителей фотоаппаратуры отказались от двигателей, встроенных в корпус фотоаппарата в пользу кольцевых моторов. Встроенные в объектив редукторные приводы (например, AFD-двигатели Canon) на сегодняшний день остаются только в бюджетной оптике любительского класса.

Компания Canon, разработавшая объективы с кольцевыми двигателями, присвоила технологии название «USM» (англ. Ultra Sonic Motor)[* 5]. Из-за патентных ограничений другие производители не имеют права использовать то же торговое название, поэтому присвоили своим разработкам другие обозначения. Nikon указывает маркировку «SWM» (англ. Silent Wave Motor), Pentax — «SDM» (англ. Super-sonic Direct-drive Motor), Samsung — «SSA» (англ. Super Sonic Actuator), Sony/Minolta — «SSM» (англ. Super Sonic Motor), Tamron — «USD» (англ. Ultrasonic Drive), а Sigma — «HSM» (англ. Hyper Sonic Motor). На выставке PMA 2007 Olympus продемонстрировал несколько объективов с новым ультразвуковым двигателем «SWD» (англ. Supersonic Wave Drive). Все эти обозначения являются лишь торговыми названиями, описывающими одну и ту же технологию с незначительными отличиями.

В 1996 году конструктором Масару Ямамото в фотоаппарате «Contax AX» была реализована оригинальная система автофокуса, не требующая перемещения объектива или его частей[29]. Вместо этого фокусировка осуществлялась сдвигом фильмового канала с плёнкой вдоль оптической оси объектива. Такая конструкция позволяет осуществлять автоматическую наводку на резкость любых объективов[30]. Принцип не получил дальнейшего развития из-за сложности и большого момента инерции перемещаемых частей.

Режимы фокусировки

Основным режимом работы автофокуса, доступным для любых его систем, считается покадровый (англ. One Shot, Single Servo Mode)[31]. В этом режиме автофокус срабатывает один раз, фокусируясь на объект съёмки, совпадающий с положением датчика в кадре. В большинстве фотоаппаратов автофокус срабатывает после поджатия спусковой кнопки наполовину, однако в настроечном меню некоторых моделей для этого можно назначить другую кнопку. После срабатывания автофокуса и достижения резкости привод автофокуса блокируется, прекращая дальнейшую работу до тех пор, пока не сработает затвор или не будет отпущена кнопка[32]. Захват фокуса и блокировка отображаются индикацией на дисплеях, которая дублируется звуковым сигналом. При смещении объекта из зоны резкости процедуру необходимо повторить. Съёмка движущихся объектов для контрастного автофокуса затруднена, но в бытовых видеокамерах следящий режим появился одновременно с пассивным автофокусом. В видеотехнике он работает постоянно и считается основным.

В фотоаппаратах, оснащённых фазовым автофокусом, применяется более совершенный алгоритм следящего режима, поскольку такой тип датчиков позволяет вычислять скорость и направление перемещения объекта съёмки[28]. Эта технология получила название упреждающий («предиктивный») автофокус и заранее фокусирует объектив на расстояние, соответствующее вычисленному положению объекта съёмки с учётом задержки срабатывания затвора[32]. Наблюдаемое в видоискателе изображение в этом режиме может казаться не в фокусе, потому что попадает в него только при срабатывании затвора и поднятом зеркале. При этом блокировка, в отличие от покадрового режима, никогда не срабатывает и фокусировка происходит непрерывно, отслеживая все перемещения объектов и изменения кадрировки. Поэтому индикация и звуковой сигнал в этих режимах не работают[32]. Технология поддерживается всеми современными камерами с фазовым автофокусом, однако у разных производителей он называется по разному: у Canon — AI Servo, у Nikon — Continuous servo AF. Среди фотолюбителей более востребован автоматический режим выбора метода фокусировки, когда микропроцессор самостоятельно принимает решение о включении наиболее подходящего способа: покадрового или следящего[31]. Последний включается, если детектор регистрирует движение объекта съёмки. В большинстве современных профессиональных и полупрофессиональных фотоаппаратов выбор покадрового или следящего режимов так или иначе взаимосвязан с режимом выбора точки (конкретного датчика) фокусировки в пределах кадра и режимами автоматического управления экспозицией.

В некоторых случаях, когда основной неподвижный объект не совпадает в кадре с положением датчика, необходима блокировка автофокуса (англ. AF-lock). Она автоматически срабатывает в покадровом режиме после поджатия спусковой кнопки и завершения фокусировки. После этого кадр можно перекомпоновать в соответствии с замыслом и произвести съёмку. Основной объект при этом получается резким, несмотря на то, что в момент съёмки датчик находится на других объектах или фоне. В следящем режиме блокировка включается отдельной кнопкой на фотоаппарате. В профессиональных моделях для этого предусматривается отдельная кнопка AF-stop, расположенная на оправе сменных объективов, как правило, длиннофокусных. Такая кнопка останавливает фокусировку, позволяя избежать ошибки в случае внезапного появления в кадре предметов на более близких дистанциях, или непредвиденной фокусировки на фон из-за смещения сюжетно важного объекта[28].

Ещё одна технология — ловушка автофокуса (англ. Focus Trap) — позволяет производить автоматическую съёмку при попадании движущегося объекта в фокус[33]. Режим доступен в большинстве зеркальных фотоаппаратов профессионального и потребительского уровня при соответствующих настройках. При нажатой спусковой кнопке затвор срабатывает в тот момент, когда датчик автофокуса подтверждает пересечение зоны резкости.

См. также

Примечания

  1. ↑ Инфракрасная подсветка, используемая в современных фотовспышках, служит для облегчения работы пассивного автофокуса в темноте, и не относится к активным системам
  2. ↑ Современные цифровые зеркальные фотоаппараты, оснащённые функцией Live View предусматривают программную коррекцию юстировки при помощи сравнения результатов работы фазового и контрастного автофокуса, последний из которых независим от механических погрешностей [1]
  3. ↑ Патент США 5053799 A [2]
  4. ↑ Современные алгоритмы фазовых систем предусматривают случаи неуверенного захвата фокуса малоконтрастных объектов в темноте, когда необходимы повторные циклы фокусировки
  5. ↑ Название «Micro USM» обозначает более дешёвый привод с аналогичным двигателем, работающим через редуктор [3]

Источники

  1. 1 2 3 Советское фото, 1986, с. 42.
  2. 1 2 3 4 Системы автофокуса цифровых фотоаппаратов (рус.). Ремонт фотоаппаратов. Фоторемонт (21 апреля 2010). Проверено 23 августа 2014.
  3. ↑ Фотоаппараты, 1984, с. 101.
  4. ↑ Фотоаппараты, 1984, с. 102.
  5. 1 2 3 4 Vladimir Dorofeev. История систем автофокуса (рус.). Info. Фотография для любителей. Проверено 24 августа 2014.
  6. ↑ Эликон-автофокус (1986) (рус.). Фотолюбитель (31 января 2014). Проверено 24 августа 2014. (недоступная ссылка)
  7. ↑ Фотокурьер, 2005, с. 7.
  8. ↑ Советское фото, 1982, с. 42.
  9. 1 2 Foo Leo. Introduction to the F3 AF (англ.). Modern Classic SLRs Series. Photography in Malaysia. Проверено 24 августа 2014.
  10. ↑ Canon T80 Camera (англ.). Main Features Part II. Photography in Malaysia. Проверено 24 августа 2014.
  11. 1 2 Фотоаппараты, 1984, с. 104.
  12. 1 2 Фотокурьер, 2005, с. 3.
  13. 1 2 3 Foto&video, 2008, с. 86.
  14. 1 2 Foto&video, 2008, с. 85.
  15. 1 2 Vladimir Dorofeev. Об автофокусе простыми словами (рус.). Info. Фотография для любителей (август 2010). Проверено 22 августа 2014.
  16. 1 2 Доступно о датчиках автофокуса (рус.). Info. Фотография для любителей (март 2012). Проверено 22 августа 2014.
  17. Dan Havlik. Fast & Furious: Canon Intros Speedy, 4K-Shooting 20.2MP, Full Frame EOS-1D X Mark II Pro DSLR (англ.). DSLR News. журнал «Shutterbug» (1 February 2016). Проверено 2 февраля 2016.
  18. 1 2 Лазерный автофокус на свой смартфон LG переставила с пылесоса (рус.). Физика. Новости информационных технологий (29 мая 2014). Проверено 1 августа 2015.
  19. Andrew Williams. How the LG G3 laser AF camera focus works (англ.). Opinions. Trusted Reviews (28 May 2014). Проверено 1 августа 2015.
  20. Дмитрий Крупский. Гибридный автофокус в матрицах Fujifilm (рус.). OnPhoto (14 февраля 2013). Проверено 23 августа 2014.
  21. Владимир Медведев. Пара мыслей про Canon 70D (рус.). LiveJournal (2 июля 2013). Проверено 23 августа 2014.
  22. ↑ Dual Pixel CMOS AF will change —High Image Quality” the basic assumptions about Digital SLRs (англ.). Canon. Проверено 26 августа 2016.
  23. ↑ Анонсированa камера Canon EOS 5D Mark IV (рус.). Новости. Fototips (25 августа 2016). Проверено 28 августа 2016.
  24. Stephen Shankland. Adobe to support advanced photo format debuting in Canon's hot new SLR (англ.). Photography. CNET (25 August 2016). Проверено 26 августа 2016.
  25. ↑ Фотомагазин №5, 1996, с. 16.
  26. ↑ AF Zoom New FD 35-70 f/4.0 (англ.). Canon FD Resources. Photography in Malaysia. Проверено 24 августа 2014.
  27. Константин. Автофокус. В чём разница между AF-S и AF объективами (рус.). Про Фото. Проверено 24 августа 2014.
  28. 1 2 3 Фотомагазин №7—8, 1999, с. 14.
  29. Борис Бакст. Contax АХ (рус.). Contax, рождённый в Японии. Фотомастерские РСУ (3 марта 2011). Проверено 28 сентября 2015.
  30. ↑ Фотомагазин, 2000, с. 15.
  31. 1 2 Режимы фокусировки One-Shot и AI-Servo: правила применения (рус.). On-line журнал о фотографии (3 октября 2012). Проверено 25 августа 2014.
  32. 1 2 3 Онищенко Александр. О работе автофокуса в камерах Nikon (рус.). LiveJournal. Проверено 25 августа 2014.
  33. Аркадий Шаповал. Фотохитрости (рус.). Мысли про Фото. Радожива (15 декабря 2012). Проверено 24 августа 2014.

Литература

  • Борис Бакст. Pentax и автофокус (рус.) // «Фотокурьер» : журнал. — 2005. — № 1/97. — С. 3—10.
  • Ю. Волков, Н. Капустина, В. Коротков. Системы автоматической фокусировки (рус.) // «Советское фото» : журнал. — 1986. — № 11. — С. 42. — ISSN 0371-4284.
  • Александр Доброславский. Автофокус — простота через сложность (рус.) // «Советское фото» : журнал. — 1982. — № 11. — С. 42—44. — ISSN 0371-4284.
  • Владимир Самарин. Система автофокусных камер Nikon (рус.) // «Фотомагазин» : журнал. — 1996. — № 5. — С. 16—22. — ISSN 1029-609-3.
  • Владимир Самарин. Contax — линейка, в которой нет любительских камер (рус.) // «Фотомагазин» : журнал. — 2000. — № 10. — С. 9—20. — ISSN 1029-609-3.
  • Андрей Шеклеин, Владимир Самарин. Анатомия и физиология современной зеркалки (рус.) // «Фотомагазин» : журнал. — 1999. — № 7—8. — С. 10—18. — ISSN 1029-609-3.
  • М. Я. Шульман. Фотоаппараты / Т. Г. Филатова. — Л.: «Машиностроение», 1984. — 142 с. — 100 000 экз.

Ссылки

wiki.sc

Просто о контрастном и фазовом автофокусе

Принципы работы системы автофокуса.

Фокусировка – больной вопрос для большинства фотолюбителей (да и профессионалов тоже). Поверьте, или проверьте: любой фотографический форум убедит Вас, а тесты фотоаппаратов обязательно содержат раздел, посвященный исключительно работе автофокуса.

Обсуждения же автофокуса на фотографических форумах чаще всего заканчиваются взаимными обвинениями в невежестве или виртуальным хватанием за лацканы пиджака с криками «А ты кто такой?!». Подумалось мне заняться самообразованием и разобраться - на бытовом уровне, как работает автофокус в современных цифровых фотоаппаратах. Оказалось, что материалов в сети очень немного, а понятных человеку без специального образования – еще меньше. Результаты поисков и компилирование информации (спасибо ЛензРенталз!) изложены ниже.

В современных цифровых фотоаппаратах используются две системы автофокуса: контрастный автофокус и фазовый автофокус. Давайте начнем с более простой (и менее распространенной в «зеркалках») системы автофокуса: контрастного автофокуса.

Контрастный автофокус

Контрастный автофокус работает следующим образом: процессор оценивает гистограмму, получаемую с матрицы фотоаппарата, немного перемещает линзы объектива – смещая точку фокусировки, затем производит переоценку, чтобы увидеть, повысился или снизился контраст. Если контраст повысился, фотоаппарат продолжает смещать точку фокусировки в выбранном направлении, пока изображение не станет максимально контрастным. Если же контраст снизился, объективу дается указание смещать точку фокусировки в другую сторону. Процесс повторяется до достижения максимального контраста (что по существу означает продвижение точки фокусировки чуть дальше положения максимального контраста и возврат к точке, после которой контраст начал снижаться). «Сфокусированное» методом контрастного автофокуса изображение – это изображение с максимальным контрастом.

Если ваша камера показывает гистограмму в режиме Live View можно вручную фокусироваться по контрасту.

При контрастном автофокусе оценивается изображение с небольшого участка матрицы – используемого в качестве датчика и совпадающего с точкой фокусировки, выбранной фотографом. Это позволяет выбрать объект, на котором нужно сфокусироваться, и избавляет процессор фотоаппарата от необходимости оценивать контраст всего изображения – оценивается контраст только в выбранных точках автофокусировки.

 

Недостатки контрастного автофокуса

Основным недостатком контрастного автофокуса является его неторопливость. Многоходовый процесс «сдвиг точки фокусировки/линз объектива – оценка – сдвиг – оценка» требует времени, да и фотоаппарат может начать с перемещения точки фокусировки в неправильном направлении – потом нужно будет возвращаться. Из-за крайне невысокой скорости и невозможности следящей фокусировки, контрастный автофокус мало подходит для динамичных сюжетов. Медлительность усложняет даже съемку неподвижных объектов. Контрастный автофокус значительно более чем фазовый зависит от хорошего освещения, да и - что очевидно - требует хорошей контрастности объекта, на котором производится фокусировка.

 

Преимущества контрастного автофокуса

Есть у контрастного автофокуса и преимущества, благодаря которым он не только до сих пор используется в фотоаппаратах, но и увеличивает свое присутствие. Во-первых, система контрастного автофокуса проще. Она не требует дополнительных датчиков и микросхем, которые нужны для фазового автофокуса. Простота снижает стоимость и (а для многих цена важнее скорости) является основной причиной использования контрастного автофокуса в компактных цифровых фотоаппаратах. (Другая причина состоит в том, что глубина резкости у компактных фотоаппаратов изначально больше и требования к точности автофокуса существенно ниже).

Простота системы контрастного автофокуса уменьшает ее размер. Например, появившиеся недавно беззеркальные цифровые фотоаппараты со сменной оптикой стремятся к миниатюрности, а система контрастного автофокуса не требует «отводить» изображение в сторону от матрицы фотоаппарата: значит не нужны призмы, зеркала и линзы, необходимые для системы фазового автофокуса. Миниатюрность - одно из важнейших преимуществ беззеркальных фотоаппаратов со сменной оптикой - все они используют контрастный автофокус.

Второе преимущество состоит в том, что в системе контрастного автофокуса используется матрица фотоаппарата. Нет необходимости «отвода» пучка света через специальные призмы и зеркала на дополнительные датчики, которые могут быть неотюстированы по отношению к матрице фотоаппарата. При контрастной автофокусировке оценивается реальное изображение на матрице фотоаппарата, а не отдельное изображение, которое должно быть (а «должен» еще не значит, что так и есть) точно выверено на соответствие с матрицей.

Именно по этой причине контрастный автофокус обеспечивает более точную автофокусировку, чем фазовый. Подчеркну: "при использовании матрицы для контрастной фокусировки". В зеркальных фотоаппаратах Olympus и Sony для контрастного автофокуса в режиме Live View используется дополнительная, меньшая матрица, а значит - как и в любой системе, требующей юстировки - остается возможность неправильной юстировки.

В целом, система контрастного автофокуса проще, дешевле, меньше по размерам, и теоретически более точна, чем фазовый автофокус. Но она намного медленнее. Производители прилагают все усилия, чтобы ускорить контрастный автофокус, есть успехи, но в ближайшем будущем он будет оставаться более медленным.

Фазовый автофокус

Основные принципы

Систему фазового автофокуса (также известного как phase matching) предложила фирма Honeywell в 1970-х годах; впервые серийно ее использовали в фотоаппарате Minolta Maxxum 7000. Honeywell подала на Minolta иск за нарушение патентых прав и выиграла дело; так что производителям пришлось заплатить Honeywell за право использовать фазовую систему автофокуса.

Фазовый автофокус основан на принципе, согласно которому, исходящие/отраженные от точки, находящейся в фокусе, лучи будут в равной степени освещать противоположные стороны объектива («будут находиться в фазе»). Если объектив сфокусирован перед или позади этой точки, эти лучи света по-разному проходят через края объектива («находятся не в фазе»).

Большинство существующих систем фазового автофокуса используют зеркала, линзы или призмы (разделители пучка), чтобы разделить лучи, проходящие через противоположные края объектива на два луча; и вторичную систему линз, чтобы снова сфокусировать эти лучи на датчике автофокуса (как правило, CCD). Этот датчик определяет, куда падают лучи света проходящие через противоположные края объектива. Если точка находится в фокусе, лучи попадают на датчик на определенном расстоянии друг от друга. Если объектив сфокусирован ближе или дальше требуемой точки, расстояние между этими лучами будет меньше или больше. Много слов, давайте попробуем посмотреть на графическое отображение процесса - (рис. 1).

Рис. 1 Принцип работы фазового автофокуса

Сразу оговорюсь: описание и рисунок дают очень упрощенное объяснение принципа работы фазового автофокуса – для того лишь, чтобы получить представление о том, «как это работает». Физика и механика процесса, описание которых заняло бы не одну страницу, полную формул, цифр и других непонятностей, остались «за кадром».

 

На рисунке ясно видно, что процессор фотоаппарата в системе фазового автофокуса сразу определяет, сфокусирован объектив слишком близко или слишком далеко от объекта, так что один из недостатков контрастного автофокуса (камера не знает, в какую сторону смещать точку фокусировки) изначально отсутствует - вместо перемещения вперед и назад и определения в каком направлении лежит большая контрастность, в фазовом автофокусе процессор сразу видит, в какую сторону смещать точку фокусировки.

А дальше идет процесс. Каждый автофокусный объектив оснащен микропроцессором, сообщающим фотоаппарату о своем присутствии и состоянии, например, "Я объектив 50/1.4 и мой фокусирующий элемент находится в положении на 20% ближе, чем бесконечность" - или нечто подобное. Когда Вы нажимаете на кнопку затвора наполовину, происходит следующее:

  • Фотоаппарат считывает данные с датчика автофокуса, сверяется с массивом данных, содержащих сведения о свойствах автофокусных объективов этого производителя, делает некоторые расчеты и говорит объективу что-то вроде "Передвинь точку автофокуса вот настолько к бесконечности".

  • В объективе есть датчики и микросхемы, измеряющие либо количество тока, поданного на моторчик фокусировки, либо насколько передвинулся фокусирующий элемент. Объектив смещает фокусировочный элемент и посылает сигнал фотоаппарату "почти у цели".

  • Фотоаппарат перепроверяет данные с датчиков автофокуса, и отправляет сигнал объективу к более точной настройке; процесс точной фокусировки может повторяться несколько раз, пока объектив не сфокусируется «точно в цель». Если что-то идет не так, происходит печально известное "рысканье" объектива.

  • После фокусирования, фотоаппарат приказывает объективу зафиксировать фокус, и информирует фотографа (звуком и индикатором в видоискателе). Весь процесс занимает толику секунды. Очень быстро. 

Схема фазового автофокуса

 

Датчик автофокуса не может находиться перед матрицей, поэтому производители используют частично прозрачные области в зеркале, пропускающие свет на вторичное зеркало, от которого он и отражается на датчик автофокуса (рис. 2).

Рис. 2 Схема фазового автофокуса

Обычно датчик автофокуса располагается под основным зеркалом (рис. 3) вместе с датчиками экспозамера. Красной стрелкой показан датчик автофокуса фотоаппарата Canon EOS 5D. Изображение взято с сайта Canon, USA

Рис. 3 Расположение датчика автофокуса

Типы датчиков фазового автофокуса

Каждый датчик способен оценить лишь небольшую часть изображения. Горизонтальные датчики точнее работают с вертикальными деталями. В большинстве изображений вертикальные детали преобладают, поэтому горизонтальных датчиков больше. Есть и вертикальные датчики, как правило, расположенные крестообразно с горизонтальными (рис. 4). Некоторые фотоаппараты оборудованы даже диагональными датчиками фазового автофокуса.

Некоторые датчики автофокуса (почти всегда располагаются в центре), с помощью различных линз и размера самого датчика, достигают большей точности автофокуса, особенно при использовании светосильных объективов. Чаще всего они включаются в работу только при использовании объективов со светосилой f/2.8 или светлее. На рисунке 4, например, показано, что при использовании объектива f/2.8 будет использоваться крестообразный датчик, а для более темных объективов будет задействован лишь один менее точный датчик автофокуса.

Рис. 4 Крестообразный датчик автофокуса

В первых системах фазового автофокуса (и в некоторых современных фотоаппаратах среднего формата) был только один датчик в центре изображения. С ростом вычислительной мощности и инженерного мастерства добавлялись все новые и новые датчики. Сейчас у большинства фотоаппаратов их от семи/девяти и до 52. Можно – в зависимости от требований снимаемой сцены - выбрать один, все, или группу датчиков. Можно сообщить фотоаппарату какой датчик/датчики использовать.

 

Многочисленные датчики фазового автофокуса, совместно с процессором фотоаппарата, способны на замечательные вещи. Определяя, в каких датчиках движущийся объект находится в фокусе и как это изменяется – измеряя перемещение объекта и считывая показания через кратчайшие промежутки времени – фотоаппарат может предсказывать, где будет находиться движущийся объект через определенный промежуток времени. На этом основана работа следящего автофокуса.

Крестообразный датчик автофокуса

Влияние светосилы объектива

Независимо от типа датчика, автофокус будет более точным при использовании светосильных объективов. В процессе фокусировки фотоаппарат максимально открывает объектив, закрывая диафрагму до выбранного вами значения только в момент открытия шторок. Фазовый автофокус тем точнее, чем шире угол лучей света. На приведенной схеме угол лучей, полученных от объектива f/2.8 (синие линии), будет больше, чем от объектива f/4 (красные линии), которые в свою очередь больше, чем от объектива f/5.6 (желтые линии). При использовании объектива с максимальной диафрагмой f/8, только самые точные датчики способны работать, но фокусировка будет медленной и менее точной. Именно по этой причине прекращают автофокусироваться объективы f/5.6, когда мы пытаемся использовать телеконвертер, снижающий их максимальную светосилу до f/8 или f/11.

 

Преимущества фазового автофокуса

Основные преимущества фазового автофокуса мы уже упомянули:

  • он много быстрее контрастного - достаточно быстр для съемки движущихся объектов.

  • Фотоаппарат способен использовать группу датчиков для оценки движения объекта, что дает нам следящий/предикативный автофокус.

Есть и менее явные преимущества. Группы датчиков фазового автофокуса могут использоваться для "электронного ГРИП " – предварительной оценки глубины резкости. Некоторые фотоаппараты (правда, их немного) оснащены функцией автофокусной ловушки (trap autofocus) – они делают снимок в момент, когда что-то попадает в активную точку фокусировки. Если датчики обнаруживают движение в статической сцене, они могут сообщить о недопустимом шевелении фотоаппарата. Но – основное - скорость и следящий автофокус

 

Недостатки фазового автофокуса

Во-первых, система фазового автофокуса требует физической юстировки. Путь света к матрице фотоаппарата должен быть согласован с путем света к датчику автофокуса так, чтобы предмет, находящийся в фокусе на датчике автофокусировки был в фокусе и на матрице. Каждый объектив должен содержать микросхему, обеспечивающую обратную связь с фотоаппаратом и сообщающую ему информацию о точном положении фокусирующего элемента, о том, на какое расстояние элемент перемещается при подаче определенного тока на моторчик автофокуса. Все это должно быть точно согласовано и выверено таким образом, чтобы объектив смещал точку фокусировки именно туда, куда ему указал фотоаппарат, а фотоаппарат знал точное положение этой точки. Малейшая несогласованность приводит к неточной фокусировке.

Во-вторых, система требует программной настройки. Каждый фотоаппарат и объектив программируются производителем, в память вносится большое количество данных. Благодаря этим данным обеспечивается согласованная работа фотоаппарата и объектива, а точность автофокуса иногда может быть улучшена путем обновления прошивок. Такие обновления часто выпускаются вслед за появлением новых объективов.

Производители скрывают алгоритмы работы своих систем фазового автофокуса. Сторонние производители объективов вынуждены экспериментальным путем считывать и декодировать сигналы, которыми обмениваются фотоаппарат и объектив и на основе этих данных разрабатывать свои микропроцессоры и свои алгоритмы. Из-за этого точность автофокуса при использовании объективов сторонних производителей может быть ниже. Изменение алгоритмов производителями фотоаппаратов приводит к тому, что автофокус на объективах сторонних производителей отказывается работать (их нужно перепрограммировать, как недавно произошло с Sigma AF 120-300/2.8 и Nikon D3X).

 

Как уже упоминалось, светосила объектива влияет на точность фазового автофокуса. Светосильные объективы способны фокусироваться в более сложных условиях. Обычно зависимость от светосилы не вызывает проблем, потому что у темных объективов большая глубина резкости. Однако, есть значения максимальной светосилы (как правило, f/5.6 или f/8), когда фазовый автофокус просто отказывается работать. (Помните, речь идет о максимальной светосиле объектива - фотоаппарат автоматически полностью открывает диафрагму объектива в процессе фокусировки, поэтому установленное значение не оказывает влияние на автофокус, если максимальная диафрагма объектива соответствует возможностям фотоаппарата).

 

Поскольку свет попадает на датчики автофокуса только когда зеркало опущено, они перестают работать в момент снимка, и не начинают работать до того, пока зеркало не вернется в исходное положение. Именно поэтому фазовый автофокус не работает в режиме Live View, а следящий автофокус может ошибаться при серийной съемке.

 

Есть и другие проблемки, которые мы не замечаем. Линейные поляризационные фильтры мешают фазовому автофокусу. Линейных поляриков сейчас осталось немного, но бывает, что купив его «по-дешевке» владелец потом удивляется неточности автофокуса. Фазовый автофокус может просто «сдуться» на некоторых сюжетах (типа шахматной доски или решетки), а контрастный легко справляется с ними.

Live View:

Я выделил режим Live View, потому что именно он заставляет производителей работать над усовершенствованием контрастного автофокуса и над созданием гибридных систем. Как уже упоминалось, контрастный автофокус обладает определенными преимуществами, а преодоление его ограничений будет на пользу всем фотографирующим.

Olympus и Sony уже создали системы, которые разделяют пучок света, отправляя часть в видоискатель, а часть – на дополнительный датчик изображения. Такая система позволяет пользоваться фазовым автофокусом даже в режиме Live View. Но и риск неточной фокусировки возрастает, ведь используется не матрица, а вспомогательный датчик.

 

Canon описал систему, которая использует фазовый автофокус на начальном этапе, а затем тонко подстраивает фокусировку при помощи контрастного автофокуса.

Nikon кажется, подал заявку на патентование принципа, когда определенные пиксели матрицы фотоаппарата будут использоваться в качестве датчиков фазового автофокуса. Это – по-моему – будет просто революцией.

FujiFilm уже выпустил линейку компактных цифровых фотоаппаратов с гибридной системой автофокуса.

 

Поживем, увидим. Но очевидно, что впервые за последние годы изменения систем автофокуса могут быть революционным, а не эволюционными. Что – согласитесь – таит для фотолюбителей много интересного и захватывающего.

 

 

август 2010 года

www.vlador.com

Следящий и другие виды автофокуса. Какая разница, как они работают? – ФотоКто

Итак, мы поняли, что такое следящий автофокус, теперь остался последний режим –автоматический или гибридный. Он создан для того, что бы самому решать нужно ли блокировать автофокус или нет. Этот режим, в отличие от других автоматических функций камеры, кажется мне странным и бесполезным, но это мое субъективное мнение, возможно, кто-то и найдет в нем полезность и удобство. 

Приоритет спуска или фокуса

Для многих новичков, существование таких настроек покажется удивительным. Но они существуют и не обратить на них внимание, разбирая автофокус, просто не возможно. Первый из приоритетов (спуска) означает, что в момент полного нажатия кнопки спуска, резкость не имеет никакого значения, другими словами, контроль за этим полностью возложен на фотографа. Этот режим стандартно включен для следящего автофокуса. 

Приоритет фокуса, означает, что после полного нажатия кнопки спуска должно быть попадание в резкость по определенной или определенным точкам фокусировки. Если такового не будет, то фотоаппарат не позволяет сделать кадр. Этот режим обычно включен при стандартных настройках в режиме одиночного кадра.

Контрастный и фазовый автофокус, какой лучше?

В цифровых камерах производители используют два вида автофокуса, как вы уже поняли из названия, это контрастный и фазовый автофокус. Будет очень хорошо, если мы разберемся в этих понятиях. 

Контрастная система автофокуса

Этот способ автофокуса используется в так называемых цифромыльницах и в зеркальных фотоаппаратах, но только при включении функции «Live View». Этот вид автофокуса не требует дополнительных фокусировочных датчиков, так как для наведения фокуса он использует исключительно матрицу фотоаппарата. Картинка, которая поступает с матрицы фотоаппарата, анализируется процессором камеры на наличие изменения контраста. При необходимости более точной наводки на резкость процессор дает команду двигателю слегка изменить положение линз объектива в любом направлении. Если после этой манипуляции контраст изображения уменьшается, то направление движения линз меняется на противоположное. Движение в правильном направлении продолжается до тех пор, пока контраст снова не начнет падать, достигнув этого предела, процессор говорит мотору вернуть линзы к тому шагу, при котором был максимальный контраст. Достигнув этого значения, фокусировка считается законченной.

Как вы понимаете, в силу таких особенностей работы автофокуса (не известно в какую сторону следует вращать двигатель) совершается множество лишних движений. Что приводит к основным минусам этого способа фокусировки – низкая скорость, что не позволяет использовать его на профессиональных камерах. Второй минус, может и не настолько критичный – повышенное энергопотребление. 

Плюсами данного способа, является простота конструкции и возможность сфокусироваться практически в любом месте кадра. 

Фазовый автофокус

Как вы понимаете, производители фототехники уже давно ответили нам и себе на вопрос, какой автофокус выбрать. Конечно же, победила фазовая система. Разберем, почему так. 

Этот вид автофокуса используется в зеркальных цифровых и пленочных камерах. Здесь присутствует небольшое вмешательство в оптическую систему передачи изображения, так кроме основного зеркала, камера оснащается дополнительным зеркалом, которое передает часть света на модуль фазового автофокуса. Любой световой луч, который проходит через светоделительную призму и микролинзы делится на два луча, каждый из которых потом направляется на датчик автофокуса. Если наводка на резкость точна, то лучи падают на датчик в строгом расстоянии друг от друга. 
 

fotokto.ru

Автофокус Википедия

Автофо́кус — адаптивная система, обеспечивающая автоматическую фокусировку объектива фотоаппарата, кинокамеры или видеокамеры на один или несколько объектов съёмки. Автофокус состоит из датчика, управляющей системы и привода, перемещающего оправу объектива или его отдельные линзы. Разновидностью автофокуса можно считать электронный дальномер без исполнительного механизма, но с индикацией направления фокусировки и её завершения. Для обозначения автофокуса обычно используется международная аббревиатура AF.

В меньшей степени понятие автофокуса относят к системам автоматической подстройки резкости проекционных аппаратов. Например, механические лекальные устройства фотоувеличителей, предназначенные для поддержания точной фокусировки при перемещении проекционной головки относительно основания, не принято называть автофокусом.

Технологии[ | ]

Для автоматической фокусировки необходимо определить точное расстояние от фокальной плоскости до объекта съёмки. В зависимости от способа определения этого параметра все существующие системы автофокуса делятся на два основных типа: активные и пассивные[1]. Активные системы получили своё название из-за наличия элементов, взаимодействующих с объектом съёмки, таких как ультразвуковой или инфракрасный локатор[* 1]. Подобные устройства позволяют вычислить расстояние, на которое фокусируется объектив, при помощи эхолокации или триангуляции[2]. Ультразвуковой активный автофокус получил широкое распространение в фотоаппаратах одноступенного процесса Polaroid (англ. sound navigation ranging, SONAR) и бытовых кино- и видеокамерах. Инфракрасный локатор автофокуса впервые использован в 1979 году в компактном фотоаппарате «Canon AF-35M»[3].

Фотоаппарат с инфракрасным локатором автофокуса «Canon AF-35M»

Активные системы не зависят от условий освещения и могут наводиться в полной темноте на объекты без контрастных деталей. Вместе с тем, они обладают рядом недостатков, одним из которых считается невозможность точной фокусировки, если между объектом и камерой есть прозрачное препятствие, например стекло. Излучения таких систем, не воспринимаемые человеком, могут пугать животных или представлять опасность для зрения[

ru-wiki.ru

admin

Отправить ответ

avatar
  Подписаться  
Уведомление о