Фокусное расстояние человеческого глаза: Глаз и фотография — Фотография Тесты обзоры советы уроки

Содержание

Глаз и фотография - Фотография Тесты обзоры советы уроки

То, что «видит» человек, на самом деле можно сравнить с постоянно обновляемым потоком информации, которая собирается в картинку мозгом. Глаза находятся в постоянном движении, собирая информацию – они сканируют поле зрения и обновляют изменившиеся детали, сохраняя статическую информацию.

Область изображения, на которой человек может сфокусироваться в каждый отдельный момент времени составляет лишь около полу градуса от поля зрения. Она соответствует «желтому пятну», а остальная часть изображения остается не в фокусе, все более размываясь к краям поля зрения.

Изображение формируется из данных, собранных светочувствительными рецепторами глаза: палочками и колбочками, расположенными на задней внутренней его поверхности – сетчатке. Палочек больше раз в 14 - около 110-125 миллионов палочек против 6-7 миллионов колбочек.

Колбочки в 100 раз менее чувствительны к свету, чем палочки, но воспринимают цвета и гораздо лучше палочек реагируют на движение. Палочки - клетки первого типа - чувствительны к интенсивности света и к тому, как мы воспринимаем формы и контуры. Поэтому колбочки в большей степени отвечают за дневное зрение, а палочки – за ночное. Существуют три подтипа колбочек, отличающиеся по восприимчивости к разным длинам волн или основным цветам, на которые они настроены: колбочки S-типа для коротких волн - синий, M-типа для средних - зеленый и L-типа для длинных – красный. Чувствительность соответствующих колбочек к цветам не одинакова. То есть, количество света, необходимого для того, чтобы произвести (одинаковое по интенсивности воздействие) такое же ощущение интенсивности различна для S, M и L колбочек. Вот вам и матрица цифрового фотоаппарата – даже фотодиодов зелёного цвета в каждой ячейке в два раза больше, чем фотодиодов других цветов, в результате разрешающая способность такой структуры максимальна в зелёной области спектра, что соответствует особенностям человеческого зрения.

 

Мы видим цвет преимущественно в центральной части поля зрения - именно там расположены почти все колбочки, чувствительные к цветам. В условиях недостатка освещения, колбочки теряют свою актуальность и информация начинает поступать от палочек, воспринимающих все в монохроме. Именно поэтому, многое из того, что мы видим ночью, выглядит черно-белым.

Но и при ярком свете, края поля зрения остаются монохромными. Когда Вы смотрите прямо вперед, и на краю вашего поля зрения появляется автомобиль, вы не сможете определить его цвет до тех пор пока глаз на мгновение не посмотрит в его сторону.

 

Палочки чрезвычайно светочувствительны – они способны зарегистрировать свет всего одного фотона. При стандартной освещенности глаз регистрирует около 3000 фотонов в секунду. А поскольку центральная часть поля зрения населена колбочками, ориентированными на дневной свет, глаз начинает видеть больше деталей изображения не по центру, как только солнце опускается ниже горизонта.

Это легко проверить наблюдая за звездами в ясную ночь. По мере адаптации глаза к недостатку освещения (полная адаптация занимает около 30 минут), если вы смотрите в одну точку, вы начинаете видеть группы слабых звезд в стороне от точки, куда вы смотрите. Если перевести на них взгляд, то они пропадут, а новые группы появятся в области, где ваш взгляд был сфокусирован до перемещения.

 

Многие животные (а птицы – так почти все) имеют гораздо большее число колбочек по сравнению со средним человеком, что позволяет им обнаружить мелких животных и другую добычу с большой высоты и расстояния. И наоборот, у ночных животных и существ, которые охотятся ночью больше палочек, что улучшает ночное зрение.

Фокусное расстояние глаза. Какое же оно?(Дополнено) / Хабр

Перед началом статьи обращаюсь к маленьким фотографам — запасайтесь огнетушителями.
Поехали!

В этой статье я постараюсь обойтись без аналогий глаза с фотоаппаратом и мозга с компьютером. Почему?
С самых первых попыток изучения мозга человеком люди искали аналогии для облегчения понимания/объяснения его работы. Для каждой эпохи были свои примеры — человек сравнивал мозг с самым сложным устройством своего времени:
— паровые машины,
— ламповая техника,
— сегодня это компьютеры,
— в будущем…
Обратимся за материалом к учебникам по физиологии, дабы избежать ненужных заблуждений.

Глаз как оптическая система




На этом рисунке добавил пояснения для удобства.

Начнём с руководства по офтальмологии.
Суммарная преломляющая сила всей оптической проводящей системы глаза называется

физической рефракцией.
Диоптрии всех оптических сред глазного яблока:
— роговица ~ 43 дптр,
— передняя камера ~ 3 дптр,
— хрусталик ~ 19-33 дптр,
— стекловидное тело ~ 6 дптр.
Передняя камера заполнена водянистой влагой — жидкостью по оптическим свойствам близкой к воде. (Ремизов А.Н. «Медицинская и биологическая физика» с.384)
Необходимо понимать, что первые три среды являются собирающими свет, а стекловидное тело рассеивает его, поэтому при расчёте мы отнимаем это значение.

Сила преломления рассчитывается в диоптриях по простой формуле из геометрической оптики:
Д=Др+Дп.к+Дхр-Дст.т.= 43+3+19-6=59 дптр

Значение хрусталика в этом расчёте принято 19 дптр, так как оно соответствует его рефракции в расслабленном состоянии, когда мы смотрим в даль.

Дальше переводим диоптрии в миллиметры:
F=1/Д=1/59=0,0169 м=17 мм.

Вывод: фокусное расстояние глаза человека ~17 мм.

На этапе изучения оптических свойств глаза мы имеем значение ~17 мм.
Цитата — «Возьмем случай, где средняя физическая рефракция (60,0D) в глазном яблоке с передне-задним размером средней величины (23 мм). Нетрудно подсчитать, что при толщине роговицы около 1 мм, глубине передней камеры около 3 мм и отрезке от переднего полюса хрусталика до узловой точки 2 мм, от последней до сетчатки остается как раз 17 мм, что и обеспечит фокусировку параллельных лучей в центральной ямке желтого пятна, так как совпадает с главным фокусным расстоянием.»

С.А.Рухлова «Основы офтальмологии» 2006 г.

Но, думаю, кто-то возразит — фокусное расстояние должно быть около 50мм!

Почему должно и почему некоторым так кажется? Для ответа на этот вопрос мы двинемся дальше — в зрительную кору.

Зрительная кора

Дэвид Хьюбел и Торстен Визель в своих знаменитых работах по физиологии зрения установили, что путь сетчатка->ЛКТ->первичная зрительная кора имеет топографическую организацию.
Это говорит нам о том, что порядок, в котором волокна зрительного нерва выходят из сетчатки сохраняется и в коре V1.
А визуализировать это утверждение смог Р. Тутелл. Для этого он взял макака, нашпиговал его транквилизаторами и в течение 45 минут показывал мишень с тремя радиальными кружками. Обезьян смотрел на рисунок только одним глазом. Перед всей этой затеей животному сделали инъекцию радиоактивной 2-дезоксиглюкозы.

Так как нейроны питаются исключительно глюкозой, то можно легко отследить самые активные клетки — они потребляют больше всего сахара.
После этого первичную зрительную кору макаки растянули, заморозили и проявили радиоактивные метки.
Результат на рисунке ниже.

Самый маленький кружок в центре мишени на топографической проекции в коре занимает площадь совсем немного меньше, чем площадь внешнего круга. У человека этот эффект ещё более выражен — центральная часть поля зрения проецируется на бОльшие площади в коре.
Для облегчения понимания был создан такой рисунок:

Здесь прекрасно видно, как увеличивается изображение с центра сетчатки.
Сделаю ударение на том, что это не оптическое, а кортикальное увеличение.

Подведём итог:
— фокусное расстояние ~17 мм,
— охват поля зрения одного глаза по горизонтали 140 – 160˚,
— изображение с центральной части сетчатки создаёт в коре

ощущение(феномен) увеличенной картинки, хотя оптически проекция равномерная.

UPD:

И всё же, для успокоения тех, у кого подгорает от 17 мм — выше была дана цифра фокусного расстояния для ВСЕГО глаза и для ВСЕГО поля зрения.
Чёткое зрение у нас только в центральной части сетчатки, которая называется Fovea. Угловое разрешение этой части сетчатки 1˚40'. Когда мы смотрим на мир вокруг(читаем текст, разглядываем пейзаж), то практически всегда наше внимание находится в этой маленькой точке с угловым разрешением около 1 градуса. Да, сознательно мы можем сместить внимание хоть на край сетчатки — там, где картинка совсем нечёткая. Но расширить зону внимания невозможно — такова физиология зрительной коры и феноменология построения той картинки, которую мы видим в итоге. И исходя из этого зрительного опыта создаётся впечатление о более узком поле зрения(длинном фокусном расстоянии), чем есть на самом деле.

Литература:
В.В.Вит «Строение зрительной системы человека» 2003 г.
Е.А.Егоров «Офтальмология» 2010 г.
С.А.Рухлова «Основы офтальмологии» 2006 г.
Новохатский А.Г. «Клиническая периметрия», 1973 г.

Дэвид Хьюбел — «Глаз, мозг, зрение»
Стивен Палмер — «От фотонов к феноменологии»
Баарс Б., Гейдж Н. — «Мозг, познание, разум»
Джон Николлс, А. Мартин, Б. Валлас, П. Фукс — «От нейрона к мозгу»
Майкл Газзанига — «Кто за главного?»

Ссылки:
https://www.sciencedirect.com/science/article/pii/S089662730700774X
https://www.ncbi.nlm.nih.gov/books/NBK10944/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446894/
https://books.google.com/books?id=_yYrIBT42BkC&pg=PA414

Камера и человеческий глаз

Почему нельзя просто направить камеру на то, что видишь, и снять это? Этот вопрос кажется простым. Тем не менее, на него очень непросто дать ответ, и для этого потребуется изучить не только то, как камера записывает свет, но и то, как работают наши глаза и почему они работают именно так. Разбираясь в этом, можно открыть для себя что-то новое о нашем повседневном восприятии мира — помимо возможности стать лучшим фотографом.

 VS. 

Общие сведения

Наши глаза способны окидывать происходящее взглядом и динамически адаптироваться в зависимости от объекта, в то время как камера записывает одиночное неподвижное изображение. Многие считают это основным преимуществом глаз перед камерой. Например, наши глаза способны компенсировать дисбаланс яркости различных предметов, могут смотреть по сторонам, чтобы получить более широкий угол зрения, а также могут фокусироваться на объектах на различных расстояниях.

Однако результат скорее подобен работе видеокамеры — не фото — поскольку наше сознание собирает несколько взглядов в один мысленный образ. Быстрый взгляд наших глаз был бы более честным сравнением, но в итоге уникальность нашей зрительной системы неопровержима, поскольку:

То, что мы видим, является мысленной реконструкцией объектов на основе образов, предоставленных глазами — отнюдь не тем, что наши глаза в действительности увидели.

Вызывает скепсис? У большинства — по крайней мере поначалу. Следующие примеры демонстрируют ситуации, в которых сознание можно заставить видеть нечто отличное от того, что видят глаза:

ложный цвет полосы Маха

Ложный цвет: наведите курсор на край изображения и смотрите на центральный крест. Отсутствующий кружок будет перемещаться по кругу, и через некоторое время начнёт казаться зелёным — хотя в изображении зелёного цвета нет.

Полосы Маха: наведите курсор на изображение. Каждая из полос покажется чуть темнее или светлее вблизи верхней или нижней границы, соответственно, — несмотря на то, что каждая из них окрашена равномерно.


Впрочем, это не должно помешать нам сравнивать наши глаза и камеры! Во многих случаях честное сравнение всё же возможно, но только если мы принимаем во внимание и то, как мы видим, и то, как наше сознание обрабатывает эту информацию. Последующие разделы проведут границу между этими двумя, насколько возможно.

Обзор различий

Данная статья группирует сравнения по следующим визуальным категориям:

  1. угол зрения
  2. различимость деталей
  3. чувствительность и динамический диапазон

Всё это зачастую считается предметом максимальных отличий глаз от камеры, и как раз по этому поводу возникает больше всего разногласий. Есть и другие характеристики, такие как глубина резкости, объёмное зрение, баланс белого и цветовая гамма, но они не являются предметом данной статьи.

1. Угол зрения

Для камер он определяется фокусным расстоянием объектива (а также размером сенсора). Например, фокусное расстояние телеобъектива больше, чем стандартного потретного, а потому угол зрения меньше:

К сожалению, с нашими глазами не всё так просто. Хотя фокусное расстояние человеческого глаза приблизительно равно 22 мм, эта цифра может ввести в заблуждение, поскольку глазное дно закруглено (1), периферия нашего поля зрения значительно менее детальна, чем центр (2), и к тому же то, что мы видим, является комбинированным результатом работы двух глаз (3).

Каждый глаз по отдельности имеет угол зрения порядка 120-200°, в зависимости от того, насколько строго объекты определены как "наблюдаемые". Соответственно, зона перекрытия двух глаз составляет порядка 130° — она практически настолько же широка, как у объектива типа "рыбий глаз". Однако по эволюционным причинам наше периферийное зрение пригодно только для обнаружения движения и крупных объектов (таких как прыгающий сбоку лев). Более того, настолько широкий угол выглядел бы сильно искажённым и неестественным, будучи снятым камерой.

 левый глаз оба глаза правый глаз

Наш центральный угол зрения — порядка 40-60° — максимально влияет на наше восприятие. Субъективно это соотносится с углом, в пределах которого вы сможете вспомнить объекты, не двигая глазами. Кстати, это близко к углу зрения "нормального" объектива с фокусным расстоянием 50 мм (если совсем точно, то 43 мм) на камере полного кадра или 27 мм на камере с кроп-фактором 1.6. Хотя он и не воспроизводит полный угол нашего зрения, он хорошо передаёт то, как мы видим, достигая наилучшего компромисса между различными типами искажений:

Сделайте угол зрения слишком большим, — и разница в размерах объектов будет преувеличена, ну а слишком узкий угол зрения делает относительные размеры объектов практически одинаковыми, и вы теряете ощущение глубины. Сверхширокие углы к тому же ведут к тому, что объекты по краям кадра оказываются растянуты.

 искажение перспективы 

(при съёмке стандартным/прямолинейным объективом)

Для сравнения, несмотря на то, что наши глаза создают искажённое широкоугольное изображение, мы реконструируем его в объёмный мысленный образ, в котором искажения отсутствуют.

2. Различимость и детальность

Большинство современных цифровых камер имеют 5-20 мегапикселей, что зачастую преподносится как полный провал по сравнению с нашим собственным зрением. Это основано на том факте, что при идеальном зрении человеческий глаз по разрешающей способности эквивалентен 52-мегапиксельной камере (принимая за угол зрения 60°).

Однако эти подсчёты вводят в заблуждение. Лишь наше центральное зрение может быть идеальным, так что в действительности мы никогда не достигаем такой детальности за один взгляд. По мере удаления от центра наши зрительные способности драматически падают — настолько, что всего на 20° от центра наши глаза различают уже всего одну десятую от исходной детальности. На периферии мы обнаруживаем только крупномасштабный контраст и минимум цветов:

Качественное представление визуальной детальности одного взгляда.

Принимая это во внимание, можно утверждать, что один взгляд наших глаз способен различать детали всего лишь сравнимые с 5-15 мегапикселями камеры (в зависимости от зрения). Однако наше сознание в действительности не запоминает образы попиксельно; оно записывает памятные детали, цвет и контраст для каждого изображения по-разному.

В результате, чтобы воссоздать детальный зрительный образ, наши глаза фокусируются на нескольких представляющих интерес предметах, быстро их чередуя. Вот наглядное представление нашего восприятия:

 
исходная сцена   предметы интереса

Конечным результатом является зрительный образ, детальность которого эффективно приоритизируется на основе интереса. Из этого следует важное для фотографов, но часто оставляемое без внимания свойство: даже если снимок максимально использует всю технически возможную детальность камеры, эта детальность не будет иметь особого значения, если сам по себе снимок не содержит ничего запоминающегося.

К прочим важным отличиям того, как наши глаза различают детали, относятся:

Асимметрия. Каждый глаз способен воспринимать больше деталей ниже линии зрения, чем выше, а периферийное зрение гораздо более чувствительно по направлению от носа. Камеры снимают изображения абсолютно симметрично.

Зрение при слабом свете. В условиях очень слабого света, например, лунного или звёздного, наши глаза фактически начинают видеть монохромно. В таких ситуациях наше центральное зрение к тому же становится менее зорким, чем слегка в сторону от центра. Многие астрофотографы в курсе этого и извлекают из этого преимущества, глядя чуть в сторону от неяркой звезды, если хотят разглядеть её невооружённым глазом.

Малые градации. Различимости малейших деталей зачастую уделяется чрезмерное внимание, однако малые тональные градации тоже важны — и похоже, именно по этой части наши глаза и камеры отличаются сильнее всего. Для камеры увеличенную деталь всегда легче передать на снимке — а вот для наших глаз, хоть это и противоречит интуиции, увеличение детали может сделать её менее видимой. На следующем примере оба изображения содержат текстуру с одинаковым контрастом, однако на изображении справа она не видна, поскольку была увеличена.


больше в 16 раз
мелкая текстура
(едва видна)
  грубая текстура
(не видна)

3. Чувствительность и динамический диапазон

Динамический диапазон является одной из характеристик, по которой глаз зачастую рассматривают как имеющий огромное преимущество. Если рассматривать ситуации, в которых наш зрачок расширяется и сужается, адаптируясь к разнице яркостей, тогда да, наши глаза намного превосходят возможности одиночного снимка (и могут иметь диапазон, превышающий 24 f-ступени*). Однако в таких ситуациях наши глаза динамически адаптируются, как это делает видеокамера, так что это, очевидно, нечестное сравнение.

фокус на фоне фокус на переднем плане зрительный образ

Если же вместо этого мы оценим мгновенный динамический диапазон нашего глаза (при неизменной ширине зрачка), то камеры будут выглядеть намного лучше. Аналогию можно получить, глядя на один элемент сцены, дав глазам настроиться и не глядя никуда более. В этом случае как правило говорят, что наши глаза могут воспринимать динамический диапазон порядка 10-14 f-ступеней, что абсолютно перекрывает большинство компактных камер (5-7 ступеней), но на удивление недалеко от возможностей зеркальных камер (8-11 ступеней).

С другой стороны, динамический диапазон нашего глаза зависит также от яркости и контраста предмета, так что вышесказанное справедливо только при обычном дневном свете. При слабом звёздном свете, например, наши глаза могут достичь гораздо более широкого моментального динамического диапазона.

* Динамический диапазон. Наиболее распространённой единицей его измерения в фотографии является f-ступень, так что мы продолжим её использовать. Динамический диапазон описывает соотношение яркостей наиболее яркого и наиболее тёмного предметов в кадре в степенях двойки. То есть, в сцене с динамическим диапазоном в 3 f-ступени белый цвет в 8 раз ярче чёрного (покольку 23 = 2x2x2 = 8).

фиксация движения чувствительность к слабому свету

Авторами левого (спички) и правого (ночное небо) снимков являются lazlo и dcysurfer, соответственно.

Чувствительность. Это ещё одна важная зрительная характеристика, которая описывает способность различать нечёткие или быстродвижущиеся предметы. При ярком свете современные камеры превосходят возможности зрения относительно быстродвижущихся объектов, как показано ниже весьма необычно выглядящим результатом скоростной съёмки. Это зачастую возможно для камер со светочувствительностью ISO свыше 3200; эквивалент светочувствительности ISO для человеческого глаза при дневном свете считается равным всего лишь 1.

Впрочем, при слабом свете чувствительность наших глаз существенно возрастает (если дать им не менее получаса на адаптацию). Астрофотографы часто оценивают её диапазоном ISO 500-1000; всё же не настолько высока, как у цифровых камер, но близко. С другой стороны, камеры имеют преимущество в том, что способны посредством длительной выдержки выявлять и ещё более неяркие объекты, тогда как наши глаза не увидят никаких новых подробностей, рассматривая что-нибудь дольше, чем 10-15 секунд.

Итоги и дополнительная информация

Можно возразить, что рассуждения о том, может ли камера превзойти зрение, непоследовательны, поскольку для камер требуется другой стандарт: они нужны для создания реалистично выглядящих отпечатков. Напечатанный снимок не знает, на каких предметах сфокусируется глаз, так что каждая часть кадра должна быть предельно детальна — просто на случай, если она привлечёт внимание. Это в особенности справедливо для больших или рассматриваемых с близкого расстояния отпечатков. Однако можно и возразить, что дать сравнительную оценку возможностям камеры тоже полезно.

В целом, большинство преимуществ нашей зрительной системы проистекают из того факта, что наше сознание способно разумно интерпретировать информацию, передаваемую глазами, тогда как в случае с камерой всё, что у нас есть, — это результат работы сенсора. Но даже в этом случае современные цифровые камеры справляются на удивление неплохо, а по некоторым визуальным характеристикам даже превосходят наши глаза. По-настоящему выигрывает тот фотограф, который способен разумно собрать несколько снимков — и тем самым превзойти даже изображение, реконструированное сознанием.

Дополнительную информацию по данной теме вы можете найти в следующих статьях:

Человеческий глаз

Человеческий глаз — сложная оптическая система. Любая оптическая система – это система линз.Линзы человеческого глаза -роговица и хрусталик. Каждая линза имеет свое фокусное расстояние фокус, на котором формируется четкое изображение при преломлении световых лучей от бесконечно удаленных предметов. Это величина постоянная. В здоровом глазу фокусное расстояние равно 23,5-24 мм. На этом расстоянии располагается сетчатка глаза. Такой глаз видит четко. От сетчатки по зрительному нерву информация об увиденных предметах передается для анализа в головной мозг.

Здоровый глаз – изображение формируется четко на сетчатке глаза, острота зрения 100%, легко читает 10 строчек при проверке остроты зрения.

Основные причины плохого зрения.

Близорукость (миопия - лат. название) – изображение формируется перед сетчаткой. Причиной может быть либо увеличение длины глаза или большая преломляющая сила линз глаза (роговицы или хрусталика), при этом фокусное расстояние будет небольшим. Зрение будет нечетким вдаль.
Дальнозоркость(гиперметропия) – изображение формируется за сетчаткой, фокусное расстояние меньше 23,5-24 мм, роговица слабой оптической силы. Изображение будет нечетким.

Астигматизм – роговица имеет два различных преломления света- разные оптические силы перпендикулярные друг другу, соответственно два фокусных расстояния.Изображение получается не ввиде точки, а ввиде прямой.Изображения частично четкое, частично нет.

Пресбиопия (возрастные изменения) - после 40 лет у любого человека происходят активные изменения в организме. Меняется прозрачность хрусталика, нарушается эластичность тканей, теряется способность фокусировать изображение. Появляется необходимость использовать очки на ближних и средних дистанциях. С годами возрастные изменения прогрессируют и теряется четкость изображения вдаль. Появляется необходимость использовать очки для дали вместе с очками для близи и очками на средних расстояниях.

Близорукость и пресбиопия. Если исходно у человека была близорукость, то после 40 лет он использует очки вдаль и снимает их вблизи, приближая текст близко к глазам. Это приводит к развитию скрытого косоглазия и дискомфорту. Не допустить это возможно только использованием очков для близи.

Дальнозоркость и пресбиопия. Для четкости изображения используются очки с увеличением исходной оптической силой от 0,5 диоптрий и больше в зависимости от возраста. Появляется потребность в дополнительной коррекции на средних расстояниях.

Астигматизм и пресбиопия. В зависимости от исходных данных и возраста к астигматической составляющей буде присоединяться необходимая коррекция для четкости видения на разных дистанциях.

Глаз человека - материалы для подготовки к ЕГЭ по Физике

 

 
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: глаз как оптическая система.

Глаз - удивительно сложная и совершенная оптическая система, созданная природой. Сейчас мы в общих чертах узнаем, как функционирует человеческий глаз. Впоследствии это позволит нам лучше понять принципы работы оптических приборов; да, кроме того, это интересно и важно само по себе.

 

Строение глаза.

 

Мы ограничимся рассмотрением лишь самых основных элементов глаза. Они показаны на рис. 1 (правый глаз, вид сверху).

Slider
Рис. 1. Строение глаза

 

Лучи, идущие от предмета (в данном случае предметом является фигура человека), попадают на роговицу - переднюю прозрачную часть защитной оболочки глаза. Преломляясь в роговице и проходя сквозь зрачок (отверстие в радужной оболочке глаза), лучи испытывают вторичное преломление в хрусталике. Хрусталик является собирающей линзой с переменным фокусным расстоянием; он может менять свою кривизну (и тем самым фокусное расстояние) под действием специальной глазной мышцы.

Преломляющая система роговицы и хрусталика формирует на сетчатке изображение предмета. Сетчатка состоит из светочувствительных палочек и колбочек - нервных окончаний зрительного нерва. Падающий свет вызывает раздражение этих нервных окончаний, и зрительный нерв передаёт соответствующие сигналы в мозг. Так в нашем сознании формируются образы предметов - мы видим окружающий мир.

Ещё раз взгляните на рис. 1 и обратите внимание, что изображение разглядываемого предмета на сетчатке - действительное, перевёрнутое и уменьшенное. Так получается потому, что предметы, рассматриваемые глазом без напряжения, расположены за двойным фокусом системы роговица-хрусталик (помните случай для собирающей линзы?).

То, что изображение является действительным, понятно: на сетчатке должны пересекаться сами лучи (а не их продолжения), концентрируя световую энергию и вызывая раздражения палочек и колбочек.

Насчёт того, что изображение является уменьшенным, тоже вопросов не возникает. А каким же ему ещё быть? Диаметр глаза равен примерно 25 мм, а поле нашего зрения попадают предметы куда большего размера. Естественно, глаз отображает их на сетчатке в уменьшенном виде.

Но вот как быть с тем, что изображение на сетчатке является перевёрнутым? Почему же тогда мы видим мир не вверх ногами? Здесь подключается корректирующее действие нашего мозга. Оказывается, кора головного мозга, обрабатывая изображение на сетчатке, переворачивает картинку обратно! Это установленный факт, проверенный экспериментами.

Как мы уже сказали, хрусталик - это собирающая линза с переменным фокусным расстоянием. Но зачем хрусталику менять своё фокусное расстояние?

 

Аккомодация.

 

Представьте себе, что вы смотрите на приближающегося к вам человека. Вы всё время чётко его видите. Каким образом глазу удаётся это обеспечивать?

Чтобы лучше понять суть вопроса, давайте вспомним формулу линзы:

.

В данном случае - это расстояние от глаза до предмета, - расстояние от хрусталика до сетчатки, - фокусное расстояние оптической системы глаза. Величина является неиз
менной, поскольку это геометрическая характеристика глаза. Следовательно, чтобы формула линзы оставалась справедливой, вместе с расстоянием до разглядываемого предмета должно меняться и фокусное расстояние .

Например, если предмет приближается к глазу, то уменьшается, поэтому и должно
уменьшаться. Для этого глазная мышца деформирует хрусталик, делая его более выпуклым и уменьшая тем самым фокусное расстояние до нужной величины. При удалении предмета, наоборот, кривизна хрусталика уменьшается, а фокусное расстояние возрастает.

Описанный механизм самонастройки глаза называется аккомодацией. Итак, аккомодация - это способность глаза отчётливо видеть предметы на различных расстояниях. В процессе аккомодации кривизна хрусталика меняется так, что изображение предмета всегда оказывается на сетчатке.

Аккомодация глаза совершается бессознательно и очень быстро. Эластичный хрусталик может легко менять свою кривизну в определённых пределах. Этим естественным пределам деформации хрусталика отвечает
область аккомодации - диапазон расстояний, на которых глаз способен чётко видеть предметы. Область аккомодации характеризуется своими границами -дальней и ближней точками аккомодации.

Дальняя точка аккомодации (дальняя точка ясного видения) - это точка нахождения предмета, изображение которого на сетчатке получается при расслабленной глазной мышце, т. е. когда хрусталик не деформирован.

Ближняя точка аккомодации (ближняя точка ясного видения) - это точка нахождения предмета, изображение которого на сетчатке получается при наибольшем напряжении глазной мышцы, т. е. при максимально возможной деформации хрусталика.

Дальняя точка аккомодации нормального глаза находится на бесконечности: в ненапряжённом состоянии глаз фокусирует параллельные лучи на сетчатке (рис. 2, слева). Иными словами, фокусное расстояние оптической системы нормального глаза при недеформированном хрусталике равно расстоянию от хрусталика до сетчатки.

Ближняя точка аккомодации нормального глаза расположена на некотором расстоянии от него (рис. 2, справа; хрусталик максимально деформирован). Это расстояние с возрастом увеличивается. Так, у десятилетнего ребёнка см; в возрасте 30 лет см; к 45 годам ближняя точка аккомодации находится уже на расстоянии 20–25 см от глаза.

d_{\displaystyle min}\approx 15
Рис. 2. Дальняя и ближняя точки аккомодации нормального глаза

 

Теперь мы переходим к простому, но очень важному понятию угла зрения. Оно является ключевым для понимания принципов работы различных оптических приборов.

 

Угол зрения.

 

Когда мы хотим получше рассмотреть предмет, мы приближаем его к глазам. Чем ближе предмет, тем больше его деталей оказываются различимыми. Почему так получается?

Давайте посмотрим на рис. 3. Пусть стрелка - рассматриваемый предмет, - оптический центр глаза. Проведём лучи и (которые не преломляются) и получим на сетчатке изображение нашего предмета - красную изогнутую стрелочку.

BO
Рис. 3. Предмет далеко, угол зрения мал

 

Угол называется углом зрения. Если предмет расположен далеко от глаза, то угол зрения мал, и размер изображения на сетчатке также оказывается малым.

\alpha =\angle AOB
Рис. 4. Предмет близко, угол зрения велик

 

Но если предмет расположить ближе, то угол зрения увеличивается (рис. 4). Соответственно увеличивается и размер изображения на сетчатке. Сравните рис. 3 и рис. 4 - во втором случае изогнутая стрелочка оказывается явно длиннее!

Размер изображения на сетчатке - вот что важно для подробного разглядывания предмета. Сетчатка, напомним, состоит из нервных окончаний зрительного нерва. Поэтому чем крупнее изображение на сетчатке, тем больше нервных окончаний раздражается идущими от предмета световыми лучами, тем больший поток информации о предмете направляется по зрительному нерву в мозг - и, следовательно, тем больше подробностей мы различаем, тем лучше мы видим предмет!

Ну а размер изображения на сетчатке, как мы уже убедились из рисунков 3 и 4, напрямую зависит от угла зрения: чем больше угол зрения, тем крупнее изображение. Поэтому вывод: увеличивая угол зрения, мы различаем больше подробностей рассматриваемого объекта.

Вот почему мы одинаково плохо видим как мелкие объекты, пусть и находящиеся рядом, так и крупные объекты, но расположенные далеко. В обоих случаях угол зрения мал, и на сетчатке раздражается небольшое число нервных окончаний. Известно, кстати, что если угол зрения меньше одной угловой минуты (1/60 градуса), то раздражается лишь одно нервное окончание. В этом случае мы воспринимаем объект просто как точку, лишённую деталей.

 

Расстояние наилучшего зрения.

 

Итак, приближая предмет, мы увеличиваем угол зрения и различаем больше деталей. Казалось бы, оптимального качества видения мы достигнем, если расположим предмет максимально близко к глазу - в ближней точке аккомодации (в среднем это 10–15 см от глаза).

Однако мы так не поступаем. Например, читая книгу, мы держим её на расстоянии примерно 25 см. Почему же мы останавливаемся на этом расстоянии, хотя ещё имеется ресурс дальнейшего увеличения угла зрения?

Дело в том, что при достаточно близком расположении предмета хрусталик чрезмерно деформируется. Конечно, глаз ещё способен чётко видеть предмет, но при этом быстро утомляется, и мы испытываем неприятное напряжение.

Величина см называется расстоянием наилучшего зрения для нормального глаза. При таком расстоянии достигается компромисс: угол зрения уже достаточно велик, и в то же время глаз не утомляется ввиду не слишком большой деформации хрусталика. Поэтому с расстояния наилучшего зрения мы можем полноценно созерцать предмет в течении весьма долгого времени.

 

Близорукость.

 

Напомним, что фокусное расстояние нормального глаза в расслабленном состоянии равно расстоянию от оптического центра до сетчатки. Нормальный глаз фокусирует параллельные лучи на сетчатке и поэтому может чётко видеть удалённые предметы, не испытывая напряжения.

Близорукость - это дефект зрения, при котором фокусное расстояние расслабленного глаза меньше расстояния от оптического центра до сетчатки. Близорукий глаз фокусирует параллельные лучи перед сетчаткой, и от этого изображения удалённых объектов оказываются размытыми (рис. 5; хрусталик не изображаем).

d_{0}=25
Рис. 5. Близорукость

 

Потеря чёткости изображения наступает, когда предмет находится дальше определённого расстояния. Это расстояние соответствует дальней точке аккомодации близорукого глаза. Таким образом, если у человека с нормальным зрением дальняя точка аккомодации находится на бесконечности, то у близорукого человека дальняя точка аккомодации расположена на конечном расстоянии перед ним.

Соответственно, ближняя точка аккомодации у близорукого глаза находится ближе, чем у нормального.

Расстояние наилучшего зрения для близорукого человека меньше 25 см. Близорукость корректируется с помощью очков с рассеивающими линзами. Проходя через рассеивающую линзу, параллельный пучок света становится расходящимся, в результате чего изображение бесконечно удалённой точки отодвигается на сетчатку (рис. 6). Если при этом мысленно продолжить расходящиеся лучи, попадающие в глаз, то они соберутся в дальней точке аккомодации .

A
Рис. 6. Коррекция близорукости с помощью очков

 

Таким образом, близорукий глаз, вооружённый подходящими очками, воспринимает параллельный пучок света как исходящий из дальней точки аккомодации. Вот почему близорукий человек в очках может отчётливо рассматривать удалённые предметы без напряжения в глазах. Из рис. 6 мы видим также, что фокусное расстояние подходящей линзы равно расстоянию от глаза до дальней точки аккомодации.

 

Дальнозоркость.

 

Дальнозоркость - это дефект зрения, при котором фокусное расстояние расслабленного глаза больше расстояния от оптического центра до сетчатки.

Дальнозоркий глаз фокусирует параллельные лучи за сетчаткой, отчего изображения удалённых объектов оказываются размытыми (рис. 7).

A
Рис. 7. Дальнозоркость

 

На сетчатке же фокусируется сходящийся пучок лучей. Поэтому дальняя точка аккомодации дальнозоркого глаза оказывается мнимой: в ней пересекаются мысленные продолжения лучей сходящегося пучка, попадающего на глаз (мы увидим это ниже на рис. 8). Ближняя точка аккомодации у дальнозоркого глаза расположена дальше, чем у нормального.Расстояние наилучшего зрения для дальнозоркого человека больше 25 см.

Дальнозоркость корректируется с помощью очков с собирающими линзами. После прохождения собирающей линзы параллельный пучок света становится сходящимся и затем фокусируется на сетчатке (рис. 8).

A
Рис. 8. Коррекция дальнозоркости с помощью очков

 

Параллельные лучи после преломления в линзе идут так, что продолжения преломлённых лучей пересекаются в дальней точке аккомодации . Поэтому дальнозоркий человек, вооружённый подходящими очками, будет отчётливо и без напряжения рассматривать удалённые предметы. Мы также видим из рис. 8, что фокусное расстояние подходящей линзы равно расстоянию от глаза до мнимой дальней точки аккомодации.

 

Фотографические параметры человеческого глаза: glowlight — LiveJournal

У любого человека, более-менее знакомого с фототехникой и с любовью к познанию окружающего мира, наверное, не раз возникал в голове вопрос, как соотносятся человеческий глаз и современный цифровой фотоаппарат по своим параметрам? Какова чувствительность человеческого глаза, фокусное расстояние, относительное отверстие и прочие интересные мелочи. О которых я вам сегодня и расскажу:)

Итак, облазив пол интернета я пришёл к выводу, что до сих пор не написано ни одной статьи на русском языке, которая бы поставила точку в описании человеческого глаза по техническим параметрам или покрыла тему более-менее плотно.

Фотографические параметры человеческого глаза и некоторые особенности его строения


Чувствительность (ISO) человеческого глаза динамически изменяется в зависимости от текущего уровня освещения в пределах от 1 до 800 единиц ISO. Время полной адаптации глаза к тёмной обстановке занимает около получаса.

Количество мегапикселей у человеческого глаза составляет порядка 130, если считать каждый фоточувствительный рецептор за отдельный пиксель. Однако центральная ямка (fovea), являющаяся наиболее чувствительным к свету участком сетчатки и отвечающяя за ясное центральное зрение имеет разрешение порядка одного мегапикселя и охватывает около 2 градусов обзора.

Фокусное расстояние равняется ~22-24мм.

Размер отверстия (зрачка) при открытой радужной оболочке равно ~7мм.

Относительное отверстие равняется 22/7 = ~3.2—3.5.

Шина передачи данных от одного глаза до мозга содержит порядка 1.2 миллиона нервных волокон (аксонов).

Пропускная способность канала от глаза до мозга составляет около 8-9 мегабит в секунду.

Углы обзора одного глаза составляют 160 x 175 градусов.

В сетчатке глаза человека содержится приблизительно 100 миллионов палочек и 30 миллионов колбочек. или 120 + 6 по альтернативным данным.

Ко́лбочки — один из двух типов фоторецепторных клеток сетчатки глаза. Свое название колбочки получили из-за конической формы. Их длина около 50 мкм, диаметр — от 1 до 4 мкм.

Колбочки приблизительно в 100 раз менее чувствительны к свету, чем палочки (другой тип клеток сетчатки), но гораздо лучше воспринимают быстрые движения.
Различают три вида колбочек, по чувствительности к разным длинам волн света (цветам). Колбочки S-типа чувствительны в фиолетово-синей, M-типа — в зелено-желтой, и L-типа — в желто-красной частях спектра. Наличие этих трех видов колбочек (и палочек, чувствительных в изумрудно-зеленой части спектра) даёт человеку цветное зрение. Длинноволновые и средневолновые колбочки (с пиками в сине-зелёном и жёлто-зелёном) имеют широкие зоны чуствительности со значительным перекрыванием, поэтому колбочки определённого типа реагируют не только на свой цвет; они лишь реагируют на него интенсивнее других.

В ночное время, когда поток фотонов недостаточен для нормальной работы колбочек, зрение обеспечивают только палочки, поэтому ночью человек не может различать цвета.

Па́лочки (англ. rod cells) — один из двух типов фоторецепторных клеток сетчатки глаза, названый так за свою цилиндрическую форму. Палочки более чувствительны к свету и, в человеческом глазе, сконцентрированы к краям сетчатки, что определяет их участие в ночном и периферийном зрении.

В человеческом глазе, приспособленном, преимущественно, к дневному свету, при приближении к середине сетчатки палочки постепенно вытесняются, более подходящими для дневного света, колбочками (второй вид клеток сетчатки) и в центральной ямке не встречаются вовсе. У животных ведущих преимущественно ночной образ жизни (например, кошек) наблюдается противоположная картина.

Чувствительность палочки достаточна, чтобы зарегистрировать попадание одного-единственного фотона, в то время как колбочкам необходимо попадание от нескольких десятков, до нескольких сотен фотонов. Кроме того, к одному интернейрону, собирающему и усиливающему сигнал c сетчатки, как правило, подсоединяются несколько палочек, что дополнительно увеличивает чувствительность за счет остроты восприятия (или разрешения изображения). Такое объединение палочек в группы делает периферийное зрение очень чувствительным к движениям и отвечает за феноменальные способности отдельных индивидов к зрительному восприятию событий лежащих вне угла их зрения.

Из-за того, что все палочки используют один и тот же светочувствительный пигмент (вместо трех, как у колбочек), они в малой степени или совсем не участвуют в цветном зрении.

Также, палочки реагируют на свет медленнее, чем колбочки — палочка реагирует на раздражитель в течение порядка ста миллисекунд. Это делает ее более чувствительной к меньшим количествам света, но снижает способность к восприятию быстротекущих изменений, таких как быстрая смена образов.

Палочки воспринимают свет, преимущественно, в изумрудно-зеленой части спектра, поэтому в сумерках изумрудный цвет кажется ярче, чем все остальные.

Однако следует помнить, что строение фотоаппарата отличается от строения глаза. При съёмке фотоаппаратом или видеокамерой, изображение разбивается на кадры. Каждый кадр "снимается" с матрицы в определенный момент времени, т.е. в процессор попадает готовое изображение.
В то время, как человеческий глаз отсылает в мозг постоянный видеопоток без разбиения по кадрам. Поэтому можно неверно истолковать некоторые параметры, если не разбираться в вопросе более-менее досканально.
В итоге можно сказать, что по чувствительности человеческий глаз догнала почти вся mid-end фототехника, а high-end так и вообще перегнала во много раз. Однако уровень шумов у наиболее распространенной mid-end техники гораздо выше, чем у сетчатки, а качество изображения хуже на порядок.

Так же сетчатка отличается от фотосенсоров тем, что чувствительность на ней меняется для каждого отдельного фоторецептора в зависимости от освещения, что позволяет добиться очень высокого динамического диапазона итоговой картинки. Сенсоры с подобной технологией уже разрабатываются многими компаниями, но пока ещё не выпускаются.

На данный момент ещё не изобретено устройство с размерами человеческого глаза, сопоставимое с ним ни по оптическим, ни по техническим параметрам.

Использованные источники:
http://www.clarkvision.com/imagedetail/eye-resolution.html
http://webvision.umh.es/webvision/
http://forum.ixbt.com/topic.cgi?id=20:17485
http://ru.wikipedia.org/wiki/Колбочки_(сетчатка)
http://ru.wikipedia.org/wiki/Палочки_(сетчатка)
http://en.wikipedia.org/wiki/Retina

p.s. точных данных по тем или иным значениям я так и не нашёл, пришлось пользоваться средними, более реальными и наиболее часто встречающимимся данными. Поэтому, если вы найдёте ошибку или сочтете, что разбираетесь в теме лучше, то отпишитесь в комментариях, пожалуйста. Мне будет очень интересно узнать ваше мнение и ваши дополнения.

11 отличий объектива от человеческого глаза

Ваши глаза можно сравнить с объективами фотоаппарата.

Но восприятие изображения человеком и фотоаппаратом имеет целый ряд отличий, знать которые необходимо не только фотографу, но и вам как модели.

 

Отличие первое.

У вас два глаза, каждый из которых воспринимает изображение с разных «точек зрения». Затем мозг складывает из них одну общую объемную картинку. Поэтому мы воспринимаем мир объемным, в трех измерениях. Почему у пьяного двоится в глазах? Картинки не стыкуются...

 

У фотоаппарата есть только один глаз – объектив, поэтому на фотографиях он формирует картинку в двух измерениях, то есть плоскостную. У снимка нет третьего измерения – глубины, или перспективы. Объемность изображения, перспектива получаются при помощи полутонов, свойств различных фактур и некоторых технических средств.

Не учитывая это, фотографируясь в березовой роще в пасмурную погоду, вы рискуете на снимке оказаться на фоне березового забора. По этой же причине на фотографиях мы выглядим килограммов на семь-десять тяжелее, чем на самом деле...

 

Отличие второе.

Человеческий глаз имеет свойство автоматически наводиться на резкость на том предмете, на котором мы остановили свой взгляд. Это называется аккомодацией. Такую же роль выполняют дворники на ветровом стекле автомобиля во время дождя для шофера — делают более резким изображение дороги со стоящим на ней автоинспектором.

 

У фотоаппарата это делается либо вручную, либо автоматически, но в любом случае возникает такое часто используемое в фотоискусстве и фототехнике понятие, как глубина резкости изображения. Эта характеристика показывает, между какими границами, определенными дальним и ближним расстоянием от фотоаппарата, изображение будет резким. А за пределами этих границ – расплывчатым.

 

Снимаясь на фоне памятника архитектуры, на снимке вы можете оказаться на фоне размытых цветных пятен, либо сами рискуете стать таким пятном на фоне исторического монумента.

 

Отличие третье.

Человеческий глаз воспринимает предметы, машины, животных, людей в движении. Фотоаппарат же движение останавливает. Еще Гете что–то там сказал насчет остановки мгновения. Чтобы снимок выглядел динамичным, фотографы используют различные средства, как технические, так и композиционные. Выражение вашего лица постоянно меняется за счет мимики и движения, то есть получается, что у вас в разные моменты времени имеется множество лиц. Объектив же способен выхватывать из этого многообразия только конкретные отдельные мгновения.

 

Если вас засняли во время спортивных соревнований бегущим, глядя на кадр, можно будет подумать, что вы работаете манекеном в витрине магазина по продаже спортивных товаров. Если вам «приспичит» моргнуть, а в этот момент вас сфотографируют, то полуприкрытые веки сделают на снимке вас последним алкашом, хотя, может быть, в жизни вы не пьете ничего крепче кефира.

— Знаете, почему на гербе именно двуглавый орел?

— Потому что, когда его фотографировали, он головой крутил.

 

В некотором смысле изображение на фотографии не подчиняется многим законам физики, например — земного тяготения. Подпрыгнув вверх, на фотографии вы будете висеть в воздухе очень долго, пока не выцветете. Ветер будет сдувать с вас шляпу бесконечно. И даже такие стихийные явления природы, как молния или короткое замыкание, на снимке будут происходить вечно!

 

Отличие четвертое.

Вы привыкли видеть себя в зеркале, то есть свое зеркальное, «обратное» отображение.

Фотография же дает ваше реальное изображение, и в некоторых случаях при явной асимметрии лица, мимики, наличии родимых пятен на лице и т. д., у вас может возникнуть подозрение, что на фотографии изображены не вы.

Смотрите на себя в зеркало через другое зеркало, если оно, конечно, не в комнате смеха – и проблем у вас больше не будет.

– Как ты догадался, что папа получил зарплату?

– А он зеркало в ванной бреет!

 

Отличие пятое.

Глаз и фотоаппарат воспринимают фигуру человека по-разному.

Хотя ваш взгляд двигается по изображению хаотически, максимум внимания приходится на смысловые центры. Такими центрами являются изображения человека или животного, даже если картина представляет собой пейзаж или на ней изображены любые предметы, в том числе и техника. Однако и здесь существуют некоторые приоритеты. Лица людей или морды зверей при восприятии значат больше, чем вторичные половые признаки, затем идут, по мере значимости, фигура, интерьер.

 

Также смысловым центром изображения является любой ярко выраженный жест, отражающий эмоциональное состояние конкретной модели.

При портретной съемке любая эмоция, ярко выраженная на лице — смех, крик, плач, гримаса — также мгновенно становится центром композиции, независимо от положения тела.

Привлекательные женщины прритягивают внимание.

Рассматривая портрет, зритель акцентирует свое внимание главным образом на композиционных центрах: глаза, рот, нос человека или животного.

 

Мужчины обычно воспринимают женские ноги, лицо, вторичные половые признаки, отдельно от всего остального. При этом их значимость, в зависимости от характера, может превосходить лицо модели.  Эти части тела как бы заполняют всю плоскость кадра, несмотря на то, что реально занимают не такую уж и большую площадь, и являются смысловыми центрами изображения.

 

Женщины основное внимание обращают на лицо мужчины, его глаза, только затем — на фигуру.

Движение человека на фотографии, его мимика, обаяние или его отсутствие, личные симпатии или антипатии зрителя создают подчас настолько различные образы одного и того же человека на фотографии и в голове зрителя после осмысления восприятия изображения, что можно сказать — это совсем разные люди.

 

Поэтому имейте в виду, что то, как воспринимает вас фотограф, может разительно отличаться от того, что получится на снимке. Если фотограф неопытный, то правильно сняться – и ваша задача как модели, причем непростая.

 

Отличие шестое.

Человеческий глаз автоматически настраивается на освещенность предмета. Это называется адаптацией. Вспомните, когда вы переходите из светлого помещения в темное, сначала вы ничего не видите, но потом ваши глаза привыкают, и вы начинаете искать в темноте черную кошку, которой там, может быть, и нет.

При этом от того, что при ярком и сумрачном освещении у человека работают две различные зрительные системы, в полутьме он перестает распознавать цвета. Как говорится, «в темноте все кошки серы».

 

У фотоаппарата настройка на освещенность производится либо вручную, либо автоматически при помощи диафрагмы. Это тоже нужно учитывать, иначе, снимаясь, например, на солнечном морском берегу, вы рискуете на снимке оказаться темным неразборчивым пятном на фоне безбрежных морских далей, или наоборот. Этот же эффект получится, если вы находитесь между фотоаппаратом и окном или солнцем.

 

Отличие седьмое.

Человек воспринимает окружающий мир, и в том числе людей, панорамно вместе с пейзажем, интерьером или другим фоном. На снимке же можно запечатлеть модель только на фоне небольшой части панорамы, которая ограничена рамками кадра. Этот эффект часто демонстрируют по телевизору, когда, начиная программу новостей, сначала показывают панораму студии, а потом камера «наезжает» на диктора, «загоняя» его одного в телевизионный «ящик». Часто замысел фотографа и модели, если не учитываются рамки кадра, терпит крах. Например, снимаясь на вечеринке среди веселящихся друзей, вы рискуете оказаться на фоне оборванных занавесок и опустошенного стола, а великолепные ковры и антикварная мебель вашей квартиры в кадр не попадут.

 

Для достижения желаемого эффекта во время съемки надо представлять себе величину поля зрения человека, и если фотообъектив максимально ему соответствует, то он будет наиболее реальным и передающим фотографируемые объекты без искажений. В горизонтальной плоскости эффективный угол зрения у человека – 60 градусов, общий — 120 градусов; в вертикальной плоскости относительно линии горизонта — 10 градусов вверх и 27 градусов вниз. Это примерно соответствует фокусному расстоянию объектива, равному 50 мм, при съемке на столь популярную 35–миллиметровую фотопленку.

 

Отличие восьмое.

При восприятии какого-либо человека, пейзажа в обычной обстановке вы используете, кроме зрения, также слух, обоняние, осязание, вкус, и, может быть, одно из многочисленных «шестых» чувств.

 

Фотоаппарат не в состоянии донести до зрителя, что тоже является причиной того, что из кадра уходит то очарование, которое присутствовало при съемке. Снимаясь в цветочной оранжерее после майской грозы, когда воздух чист и прозрачен, цветы благоухают так, что голова идет кругом, и фотограф – ваш близкий друг, в котором вы души не чаете, с которым вам хорошо, легко и просто… Однако нужно учитывать, что на снимке всего этого не будет.

 

Отличие девятое.

Фотопленка, особенно цветная, гораздо более четко регистрирует изображение, чем человеческий глаз. Например, мы не замечаем слегка покрасневший на ветру нос, а на фотографии он может выглядеть, как у последнего алкоголика. Мы не замечаем голубых вен, которые слегка просвечивают сквозь кожу. На фотографии же они будут видны настолько четко, что по ним можно изучать кровеносную систему, особенно у моделей в возрасте. То же самое касается жировых отложений на теле. Или, например, мы можем не заметить на бумаге надпись, сделанную желтым фломастером. На снимке она прочтется очень легко. Посидите на скамейке, не замечая, что она свежеокрашенна, и ваша спина, словно фотопленка, так же четко зарегистрирует ее изображение.

 

У человеческого глаза есть еще одна особенность. Благодаря тому, что в него «встроен» природный анализатор, который постоянно сравнивает изображение с нейтральным серым цветом, глаз всегда делает поправку на освещение и практически всегда адекватно воспринимает цвета, будь то солнечный или пасмурный день, электрическое освещение или свечи... Кстати, снимки лучше всего демонстрировать именно на нейтральном светло-сером фоне, тогда они будут наиболее выразительны в связи с особенностью зрения, о котором рассказывалось выше. Но если человек и воспринимает адекватно цвета при любой освещенности, что нельзя сказать об их яркости. В ясный солнечный день он, как наиболее яркие, воспринимает красный, желтый, оранжевый цвета. В сумерках же на первое место по яркости выходят синий и зеленый цвета.

Фотопленка же изначально рассчитана только на какой-то определенный вид освещения, выражаемой так называемой цветовой температурой, и воспринимает все цвета примерно одинаково, независимо от времени суток и освещенности.

 

Отличие десятое.

Так называемый «подглядывающий эффект». Он заключается в том, что зритель может досконально рассматривать изображенную не фотографии модель, находящуюся в любой, даже самой «щекотливой» позе. И при этом он не рискует ни чем. Тогда как в жизни вступают в действия моральные принципы и социальные правила, которые довлеют над зрителем, рискующим «нарваться» на неприятности.

 

Например, девушку, у которой порыв ветра задрал подол юбки, на фотографии можно разглядывать сколько угодно. Если это происходит в реальной жизни, то спокойно можно получить пощечину.

 

Отличие одиннадцатое.

Снимки памятных нам событий и просто рабочих моментов, призваны будить на протяжении многих лет нашу память.

 

Камеры против человеческого глаза

Почему я не могу просто направить камеру на то, что я вижу, и записать это? Это, казалось бы, простой вопрос. Это также один из самых сложных ответов, и он требует не только вникать в то, как камера записывает свет, но и как и почему наши глаза работают именно так. Ответ на такие вопросы может раскрыть удивительное понимание нашего повседневного восприятия мира - в дополнение к тому, что станет лучшим фотографом.

VS.

ВВЕДЕНИЕ

Наши глаза могут осматривать сцену и динамически настраиваться в зависимости от объекта, тогда как камеры фиксируют одно неподвижное изображение. Эта черта объясняет многие из наших общепринятых преимуществ перед камерами. Например, наши глаза могут компенсировать это, когда мы фокусируемся на областях с различной яркостью, можем смотреть вокруг, чтобы охватить более широкий угол зрения, или можем поочередно фокусироваться на объектах на разных расстояниях.

Однако конечный результат сродни видеокамере, а не фотоаппарату, которая собирает соответствующие снимки, чтобы сформировать мысленный образ.Быстрый взгляд наших глаз мог бы быть более справедливым сравнением, но в конечном итоге уникальность нашей визуальной системы неизбежна, потому что:

То, что мы действительно видим, - это реконструкция объектов нашим разумом, основанная на информации, поступающей от глаз, а не на фактическом свете, получаемом нашими глазами .

Скептически? Большинство - по крайней мере, на начальном этапе. В приведенных ниже примерах показаны ситуации, в которых можно обманом заставить разум видеть нечто иное, чем глаза:

Ложный цвет Полосы Маха

False Color : Наведите указатель мыши на угол изображения и посмотрите на центральный крест.Отсутствующая точка будет вращаться по кругу, но через некоторое время она станет зеленой, хотя на самом деле зеленого цвета на изображении нет.

Полосы Маха : Перемещайте указатель мыши по изображению. Каждая из полос будет казаться немного темнее или светлее возле ее верхнего и нижнего краев, даже если каждая из них равномерно серая.


Однако это не должно мешать нам сравнивать наши глаза и камеры! Во многих условиях справедливое сравнение все еще возможно, но только если мы принимаем во внимание то, что мы видим, и , как наш разум обрабатывает эту информацию.В последующих разделах мы попытаемся различить эти два аспекта, когда это возможно.

ОБЗОР ОТЛИЧИЙ

В этом руководстве сравнения сгруппированы по следующим визуальным категориям:

  1. Угол обзора
  2. Разрешение и детализация
  3. Чувствительность и динамический диапазон

Вышесказанное часто понимается как то, где наши глаза и камеры больше всего различаются, и, как правило, также есть место, где есть наибольшие разногласия.Другие темы могут включать глубину резкости, стереозрение, баланс белого и цветовую гамму, но они не будут в центре внимания данного руководства.

1. УГОЛ ОБЗОРА

В камерах это определяется фокусным расстоянием объектива (наряду с размером сенсора камеры). Например, телеобъектив имеет большее фокусное расстояние, чем стандартный портретный объектив, и, таким образом, обеспечивает более узкий угол обзора:

К сожалению, наши глаза не так просты. Хотя человеческий глаз имеет фокусное расстояние приблизительно 22 мм, это вводит в заблуждение, потому что (i) задняя часть наших глаз изогнута, (ii) периферия нашего поля зрения содержит все меньше деталей, чем центр, и (iii) Воспринимаемая нами сцена - это результат работы обоих глаз.

Каждый глаз индивидуально имеет угол обзора от 120 до 200 °, в зависимости от того, насколько строго человек определяет объекты как «видимые». Точно так же область перекрытия двойного глаза составляет около 130 ° - или почти такой же ширины, как линза «рыбий глаз». Однако по причинам эволюции наше крайнее периферийное зрение полезно только для восприятия движения и крупномасштабных объектов (например, льва, прыгающего с вашей стороны). Более того, такой широкий угол выглядел бы сильно искаженным и неестественным, если бы он был снят камерой.

Левый глаз Двойное перекрытие проушины Правый глаз

Наш центральный угол зрения - около 40-60 ° - это то, что больше всего влияет на наше восприятие. Субъективно это соответствовало бы углу, под которым вы могли вспомнить объекты, не двигая глазами. Между прочим, это близко к «нормальному» фокусному расстоянию 50 мм для полнокадровой камеры (43 мм, если быть точным) или к фокусному расстоянию 27 мм для камеры с 1.6-кратный кроп-фактор. Хотя это не воспроизводит полный угол обзора, под которым мы видим, действительно соответствует тому, что мы воспринимаем как лучший компромисс между различными типами искажения:

Слишком широкий угол обзора и относительные размеры объектов преувеличены, в то время как слишком узкий угол обзора означает, что все объекты имеют почти одинаковый относительный размер, и вы теряете чувство глубины. Слишком широкие углы также приводят к тому, что объекты, расположенные по краям кадра, выглядят растянутыми.

(при съемке стандартным / прямолинейным объективом)

Для сравнения, даже если наши глаза фиксируют искаженное широкоугольное изображение, мы реконструируем его, чтобы сформировать трехмерное мысленное изображение, которое, казалось бы, не имеет искажений.

2. РАЗРЕШЕНИЕ И ДЕТАЛИ

Большинство современных цифровых фотоаппаратов имеют разрешение 5-20 мегапикселей, что часто считается недостаточным для нашей собственной визуальной системы. Это основано на том факте, что при зрении 20/20 человеческий глаз способен разрешить эквивалент 52-мегапиксельной камеры (при угле обзора 60 °).

Однако такие расчеты ошибочны. Только наше центральное видение - 20/20, поэтому мы никогда не решаем столько деталей за один взгляд. Вдали от центра наши зрительные способности резко ухудшаются, так что всего на 20 ° от центра наши глаза воспринимают только одну десятую от количества деталей. На периферии мы обнаруживаем только крупномасштабный контраст и минимальный цвет:

Качественное представление визуальных деталей одним взглядом глаз.

Принимая во внимание вышесказанное, один взгляд наших глаз, таким образом, способен воспринимать только детали, сравнимые с 5-15-мегапиксельной камерой (в зависимости от зрения).Однако наш разум фактически не запоминает изображения пиксель за пикселем; вместо этого он записывает запоминающиеся текстуры, цвет и контраст по каждому изображению.

Таким образом, чтобы составить подробный мысленный образ, наши глаза быстро сменяют друг друга на нескольких интересующих областях. Это эффективно окрашивает наше восприятие:

Конечным результатом является мысленный образ, детали которого эффективно расставлены по приоритетам на основе интереса. Это имеет важное, но часто упускаемое из виду значение для фотографов: даже если фотография приближается к техническим пределам детализации камеры, такие детали в конечном итоге не будут иметь большого значения, если сами изображения не запоминаются.

Другие важные различия в том, как наши глаза распознают детали, включают:

Асимметрия . Каждый глаз более способен воспринимать детали ниже нашего взгляда, чем сверху, и их периферическое зрение также намного более чувствительно в направлениях от носа, чем к нему. Камеры записывают изображения почти идеально симметрично.

Просмотр при слабом освещении . При очень слабом освещении, например, при лунном свете или свете звезд, наши глаза фактически начинают видеть в монохромном режиме.В таких ситуациях наше центральное зрение также начинает отображать меньше деталей, чем просто вне центра. Многие астрофотографы знают об этом и используют это в своих интересах, глядя только на тусклую звезду, если они хотят увидеть ее без посторонней помощи.

Тонкие градации . Слишком много внимания часто уделяется мельчайшим деталям, которые можно разрешить, но также важны тонкие градации тонов - и именно здесь наши глаза и камеры различаются больше всего. С камерой всегда легче разрешить увеличенные детали, но, как это ни парадоксально, увеличенные детали могут фактически стать менее заметными для наших глаз.В приведенном ниже примере оба изображения содержат текстуру с одинаковой степенью контраста, но она не видна на изображении справа, потому что текстура была увеличена.

Тонкая текстура
(еле видна) →
Увеличено 16X Грубая текстура
(больше не видно)

3. ЧУВСТВИТЕЛЬНОСТЬ И ДИНАМИЧЕСКИЙ ДИАПАЗОН

Динамический диапазон * - это та область, в которой глаз часто имеет огромное преимущество. Если бы мы рассмотрели ситуации, когда наш зрачок открывается и закрывается для разных областей яркости, то да, наши глаза намного превосходят возможности изображения с одной камеры (и могут иметь диапазон, превышающий 24 диафрагмы).Однако в таких ситуациях наш глаз динамически настраивается, как видеокамера, так что это, возможно, не совсем справедливое сравнение.

Глаз фокусируется на фоне Глаз фокусируется на переднем плане Наш мысленный образ

Если бы мы вместо этого рассмотрели мгновенный динамический диапазон нашего глаза (где раскрытие нашего зрачка не изменилось), то камеры работали бы намного лучше. Это было бы похоже на то, как если бы мы смотрели на одну область в сцене, позволяя нашим глазам приспособиться и не глядя куда-либо еще.В этом случае, по большинству оценок, наши глаза могут видеть где угодно от 10 до 14 ступеней динамического диапазона, что определенно превосходит большинство компактных камер (5-7 ступеней), но на удивление похоже на таковое у цифровых зеркальных камер (8-11 ступеней). останавливается).

С другой стороны, динамический диапазон нашего глаза также зависит от яркости и контраста объекта, поэтому вышесказанное применимо только к типичным условиям дневного света. Например, при просмотре звезд при слабом освещении наши глаза могут приблизиться к еще большему мгновенному динамическому диапазону.

* Количественная оценка динамического диапазона . Наиболее часто используемой единицей измерения динамического диапазона в фотографии является диафрагма, поэтому мы будем придерживаться ее здесь. Он описывает соотношение между самыми светлыми и самыми темными записываемыми областями сцены в степени двойки. Таким образом, сцена с динамическим диапазоном 3 ступени диафрагмы имеет белый цвет, который в 8 раз ярче, чем его черный (поскольку 2 3 = 2x2x2 = 8).

Фотографии слева (спички) и справа (ночное небо) сделаны lazlo и dcysurfer соответственно.

Чувствительность . Это еще одна важная визуальная характеристика, описывающая способность распознавать очень слабые или быстро движущиеся объекты. При ярком свете современные камеры лучше решают быстро движущиеся объекты, что подтверждается необычно выглядящей высокоскоростной фотографией. Это часто становится возможным благодаря чувствительности ISO камеры выше 3200; эквивалентный дневной свет ISO для человеческого глаза даже считается низким 1.

Однако в условиях низкой освещенности наши глаза становятся намного более чувствительными (при условии, что мы даем им возможность адаптироваться в течение 30+ минут).Астрофотографы часто оценивают это как значение ISO 500-1000; все еще не так высоко, как цифровые фотоаппараты, но близко. С другой стороны, камеры имеют преимущество в том, что они могут делать более длительные выдержки, чтобы выделить даже более слабые объекты, тогда как наши глаза не видят дополнительных деталей после того, как смотрели на что-то более 10-15 секунд.

ВЫВОДЫ И ДАЛЬНЕЙШЕЕ ЧТЕНИЕ

Кто-то может возразить, что то, способна ли камера превзойти человеческий глаз, несущественно, потому что камеры требуют другого стандарта: они должны делать реалистичные отпечатки.Напечатанная фотография не знает, на каких областях будет сфокусирован глаз, поэтому каждая часть сцены должна содержать максимум деталей - на всякий случай, мы сосредоточимся именно на ней. Это особенно актуально для больших или внимательно просматриваемых отпечатков. Тем не менее, можно утверждать, что по-прежнему полезно рассматривать возможности камеры в контексте.

В целом, большинство преимуществ нашей зрительной системы проистекает из того факта, что наш разум способен грамотно интерпретировать информацию, поступающую от наших глаз, тогда как с камерой все, что у нас есть, - это необработанное изображение.Несмотря на это, современные цифровые камеры работают на удивление хорошо и превосходят наши собственные глаза по некоторым визуальным возможностям. Настоящий победитель - это фотограф, который может грамотно собрать несколько изображений с камеры, превзойдя даже наш мысленный образ.

Дополнительную информацию по этой теме см. В следующих статьях:

,

Фокусное расстояние и линзы, используемые великими режиссерами

На этой странице я сравниваю известных режиссеров и их фокусное расстояние. По мере поступления новой информации я буду обновлять этот список.

Вот видео, которое я снял о фокусных расстояниях и объективах, которые использовали 19 великих режиссеров:

Важно: Информация - это либо слухи, догадки и некоторые простые исследования из интервью, книг, видео и так далее. Это могло быть совершенно неправильно! Не полагайтесь на эту информацию и не используйте ее для серьезной работы или учебы!

Эксклюзивный бонус: Загрузите БЕСПЛАТНЫЙ чертеж: Как создать фильм.Полное визуальное представление + видео процесса создания фильма от начала до конца.

Конкретные линзы, упомянутые в видео:

  • Zeiss 50 мм f / 0,7 адаптировано для Барри Линдона (37,5 мм с широкоугольным адаптером)
  • Kinoptik 9,8 мм
  • Зум-объектив Cine-Pro 24-480 мм T9

Ссылки, упомянутые в видео, которые могут быть полезны для вашего исследования и изучения:

Фокусное расстояние и линзы, используемые великими режиссерами

Вот список:

и длиннее , зум-объектив - анаморфотный.В конце концов перешел на сферический
С.№ Директор Фокусное расстояние, объектив
1 Орсон Уэллс 18 мм (Прикосновение зла), 25 мм (Гражданин Кейн)
2 Жан-Пьер Жене 18 25-мм объектив, 14 мм (Alien Resurrection), 25 мм (Delicatessen)
3 Роман Полански 18 мм, 40 мм анаморфный (Чайнатаун)
4 Уэс Андерсон 40 мм анаморфный, 27 мм (Королевский Тенебаумс, Отель Гранд Будапешт)
5 Квентин Тарантино 40 мм или 50 мм анаморфный
6 Стивен Спилберг 21 мм
7 Тим Бертон 21 мм, никогда не больше 50 мм.Длинные линзы как знак препинания
8 Мартин Скорсезе 25 мм и шире, 32 мм (Король комедии), длинные линзы для Raging Bull
9 Джоэл и Итан Коэн 27 и 32 мм ( Остается между 25-40 мм)
10 Дэвид Кроненберг 27 мм
11 Дэвид Финчер 27 мм и 35 мм
12 Фрэнсис Форд Коппола 40 мм (Большая часть Крестного отца)
13 Ясудзиро Озу 50 мм
14 Роберт Брессон 50 мм
15 Альфред Хичкок 50 мм
16 Ридли Скотт
17 Акира Куросава 35-50 мм, в конце карьеры имел тенденцию к использованию более длинных линз, но иногда
18 Сидни Люмет Изменяли фокусные расстояния для каждого фильма
19 Stanley Kubrick 18 мм, специальные объективы - Kinoptik 9,8 мм, Zeiss 50 мм f / 0,7, Cine-Pro 24-480 мм T9 zoom
20 Terry Gilliam 14 мм (более поздние работы), более ранние работы шире 28 мм
21 Стивен Содерберг 18 мм (только недавняя работа)

Если вы знаете, какое фокусное расстояние предпочитают режиссеры, которых я не упомянул, дайте мне знать.Пожалуйста, также дайте ссылку на источники, чтобы я мог подтвердить информацию. Я буду рад обновить этот список.

,

admin

Отправить ответ

avatar
  Подписаться  
Уведомление о