Фотовспышка – Как выбрать вспышку для фотоаппарата?

Фотовспышка.

В данной статье вы найдете подробную информацию на тему «Что такое фотовспышка и ее основные параметры». Вначале небольшое лирическое вступление.

Каждый фотограф знает, что свет в фотографии это самое главное, своего рода основа основ, а слово фотография в переводе с древне греческого означает светопись. Естественный свет: утренний, дневной или вечерний всегда дает фотографу огромное количество возможностей для создания самых разнообразных и интересных световых эффектов на фотографии. А что делать, когда естественного света не достаточно для правильной экспозиции кадра или выполнения определенной творческой задачи? Тогда на помощь фотографу приходит фотовспышка.

Классическое определение фотовспышки звучит следующим образом, источник света, предназначенный для создания кратковременных вспышек большой интенсивности.

Относительно расположения к камере фотовспышки бывают двух видов:

— Встроенные. Основное преимущество такой вспышки то, что она всегда доступна и не добавляет лишнего веса к фотокамере. Из очевидных минусов, во-первых, маленькая мощность, а во-вторых, свет от такой вспышки очень жесткий и резкий, что делает предмет очень плоским и образует некрасивые тени.

— Внешние. Очевидные плюсы таких вспышек следующие:

1- большая регулируемая мощность;

2 — возможность изменять направления света, за счет вращающейся головки вспышки (вверх или в сторону). За счет этой возможности, освещение объекта съемки происходит при помощи отраженного света (от стены, потолка или другого предмета), что делает свет более мягким и уменьшает резкость теней.

Внешняя вспышка и ее главные характеристики:

Ведущее число вспышки —  данный параметр указывает на мощность вспышки и соответственно чем больше это число, тем больше мощность вспышки.

Автоматический зум – для того чтобы подстраиваться и соответствовать фокусному расстоянию объектива, во вспышки встраивается автоматический зум. Это специальная рассеивающая линза, которая располагается непосредственно перед лампой вспышки и, перемещаясь, она меняет рассеивание света.

Поворотная головка – как я уже писала ранее, это позволяет поворачивать вспышку и соответственно менять направление света в разные стороны. На более простых моделях, головку фотовспышки можно поднимать только вверх, а на профессиональных еще и  в разные стороны.

Время перезарядки фотовспышки – это отрезок времени, за которое вспышка перезарядится и  будет готова в съемке следующего фотокадра.  Это важная характеристика вспышки, особенно если вы планируете снимать разные мероприятия или репортажи, где очень важна скорость съемки.

Главные режимы работы фотовспышки.

1. Автоматический – после проведения фотокамерой анализа освещенности, фотовспышка автоматически настраивает необходимую мощность.

2. TTL режим (Through the lens) – это режим при котором камера сама измеряет экспозицию и выставляет мощность фотовспышки. Освещенность измеряется датчиком, расположенным в фотоаппарате после объектива, либо собственным датчиком вспышки (зависит от фирмы производителя).

Данный режим по-разному называется у производителей фотокамер:

у Nikon i-TTL

Canon E-TTL

Pentax – P- TTL

3. Ручной режим. Требует определенного профессионального опыта работы с камерой и вспышкой, поскольку в данном режиме все параметры выстраивает сам фотограф.

Вспышка для Nikon Speedlight SB 900, Speedlight SB 910, Speedlight SB 700,  и новая модель Speedlight SB 500. Моим незаменимым помощником во время свадебной фотосъемки является Speedlight SB 900, мощная профессиональная фотовспышка. Ее основные характеристики: автоматический зум от 70 до 200 мм и высокоскоростная перезарядка в 2,2 сек. с использованием батарей типа АА. Ведущее число 34 – 48 (при ISO 100-200).

Фотовспышка Canon. Несколько моделей самых популярных фотовспышек Canon: Speedlight 600EX-RT, Speedlight 430 EX – 3RT, Speedlight 320EX.

При правильном использование фотовспышка может расширить горизонты для творческого совершенствования и помочь создавать более разнообразные и артистические эффекты на ваших фотографиях. И хотя на это требуется время, будьте уверены, что после развития навыков работы со вспышкой результаты вас будут безгранично радовать.

blogphotografelena.ru

Фотовспышка Википедия

Фотовспы́шка, импульсный фотоосветитель, ИФО — источник искусственного освещения, предназначенный для создания кратковременных световых вспышек большой интенсивности[1]. Применяется в фотографии при условиях недостаточной освещённости и съёмке быстродвижущихся объектов, а также в качестве рабочего освещения в фотостудиях.

Фотограф с магниевой вспышкой

В современной фотографии в подавляющем большинстве используются электронные фотовспышки. Достоинством фотовспышек по сравнению с источниками постоянного света является более высокая энергетическая эффективность, благодаря возможности кратковременной работы только при открытом затворе. Кроме того, фотовспышка позволяет получать резкие фотографии быстродвижущихся объектов за счёт очень короткого времени свечения.

Впервые импульсное освещение при фотосъёмке применил Уильям Генри Фокс Тальбот, который в 1851 году использовал для этого искровой разряд Лейденской банки

[2]. Однако, способ оказался несовершенным и не получил распространения. В первой половине XIX века исследователи обнаружили, что при сгорании магния происходит интенсивное излучение света, близкого по спектральному составу к дневному. Последнее оказалось важным для фотографии, поскольку для несенсибилизированных фотоэмульсий тех лет жёлто-оранжевый свет большинства источников искусственного освещения был почти неактиничным.

Комплект магниевой вспышки

Основу практическому применению вспышки магния заложил в 1859 году Уильям Крукс, разработавший его смесь с другими компонентами, выполнявшими роль окислителя, увеличивающего интенсивность сгорания[3]. В 1865 году Трейл Тэйлор усовершенствовал препарат, смешав порошок магния с хлоратом калия, серой и сульфидом сурьмы[4]. В 1887 году Адольф Митте анонсировал более простую смесь магния с бертолетовой солью, получившую в английском языке название flash-powder, а в немецком — Blitzlicht

[5]. Кроме бертолетовой соли в качестве окислителя использовались также азотнокислые барий, торий, аммоний и марганцевокислый калий[6]. Однако приготовление порошков и их дозирование занимало много времени и было сопряжен

ruwikiorg.ru

Настройка вспышки: режимы работы вспышки

Вспышка – это очень удобный инструмент, который вовсе не обременительно носить с собой. Не хватает света – используй вспышку; свет некрасиво ложится на лицах людей в кадре – включай вспышку; хочешь подсветить тени при съемке ярким днем или на закате – вспышка тебе в помощь! Если вы научитесь понимать вспышку и правильно использовать ее, вам откроется новый мир неизведанных возможностей. Но начинать нужно, как всегда, с основ. Поэтому давайте разберем режимы работы вспышки.

В этой статье будут рассмотрены режимы, которые можно выставить на самой вспышке при нажатии на кнопку Mode (Режим). Поэтому не путайте эти режимы работы вспышки с режимами синхронизации вспышки и фотоаппарата. Также оговорюсь, что в основном речь будет идти о работе с внешней вспышкой. Но на некоторых фотоаппаратах даже встроенная вспышка может иметь расширенные функции управления и несколько режимов работы. Подробнее о разнице между встроенной и внешней вспышкой читайте тут.

Основных режимов работы вспышки не так много – всего три:


Автоматический (ETTL, TTL, i-TTL, ADI и т.п.)

Мануальный / Ручной – Manual

Мульти – Multi

Обычно топовые вспышки могут работать во всех этих режимах, но также существуют вспышки, у которых, например, нет режима Multi и/или поддержки TTL. Но прежде чем расстраиваться из-за отсутствия какого-то режима или заказывать самую дорогую вспышку, давайте разберемся – а так ли нужны эти дополнительные режимы съемки?

Режим вспышки Manual

Этот режим аналогичен Ручному режиму съемки в вашем фотоаппарате – все настройки подбираются и выставляются вручную. К основным настройкам вспышки в ручном режиме относятся:

Мощность импульса – влияет на яркость освещения и расстояние, на котором объекты окажутся освещены светом от вспышки. Мощность обычно регулируется по шкале от 1/1 (максимально возможная мощность вашей вспышки) до 1/16, 1/32, 1/64 или 1/128 от максимальной мощности. Шкала градаций мощности различается в зависимости от модели вспышки. Чем больше значений (например, от 1/1 до 1/128), тем больше свободы управления и тонкостей при подстройке яркости импульса. Но и со вспышками, минимальная мощность импульса которых 1/16, вполне можно работать в большинстве ситуаций.

Большинство современных вспышек оснащены дисплеем, на котором высвечивается выставленное значение мощности в виде числового обозначения. Но встречаются вспышки без дисплея, где индикатором выставленной мощности служит своего рода шкала со светящимися лампочками. В этом случае чем больше лампочек зажжено, тем мощнее импульс выставлен. Чтобы узнать наверняка, каким образом устанавливается мощность именно на вашей вспышке, откройте инструкцию к ней. Если вы купили б/у вспышку без инструкции, наберите название и модель вспышки в поисковике с добавлением словосочетания «инструкция» или «инструкция на русском». Почти все инструкции есть в электронном виде в интернете для бесплатного просмотра и/или скачивания.

Zoom вспышки (не путать с зумом на объективе, это разные настройки, хотя и взаимосвязаны) – регулирует угол распространения и дальность «добивания» импульса от вспышки. Обычно рекомендуется выставлять значения зума внешней вспышки в соответствии с выбранным фокусным расстоянием объектива. Так, чем больше фокусное расстояние объектива, на который ведется съемка, тем меньше угол обзора, но больше расстояние от точки съемки до объекта съемки. Соответственно, для нормального освещения кадра при съемке с длиннофокусным объективом, нужен световой импульс, который добьет на большее расстояния. При этом сам световой пучок может быть более узким – не за чем освещать объекты по краям кадра, которые не участвуют в сюжете съемки.

Наоборот, при съемке с широкоугольным объективом важнее осветить большую площадь сцены, т.к. у широкоугольных объективов бОльший угол обзора. При этом объекты съемки находятся намного ближе к точке съемке, поэтому световой импульс должен быть рассчитан на короткое расстояние.

Ручной режим управления вспышкой есть практически у всех внешних вспышек и даже встречается у некоторых встроенных вспышек. Существуют полностью мануальные вспышки (они обычно стоят гораздо дешевле), которые работают только в режиме ручных настроек.

Ручной режим работы со вспышкой, так же как и ручной режим на фотоаппарате, требует не только понимания настроек, но и некоторого опыта. Если настройку зума вспышки в ручном режиме можно выставить, опираясь на фокусное расстояние объектива, то параметр мощности импульса выставляется в основном экспериментальным путем.

Значение мощности импульса вспышки зависит от следующих параметров:


—  условия освещения (вечер, ночь, сумерки, помещение с недостаточным светом, съемка на закате и проч.)

расстояние до объекта съемки (чем ближе находится объект съемки, тем меньше нужна мощность для его нормального освещения вспышкой) – вспоминаем закон распределения света в пространстве

выставленные настройки экспозиции (выдержка, диафрагма, ISO) – можно уже при помощи регулировки параметров экспозиции пропустить достаточное количество окружающего света, а вспышкой лишь немного подсветить передний план (мощность 1/16 – 1/64). Обычно такие снимки выглядят более естественно. Но если вам нужно получить ярко освещенный главный объект на переднем плане на черном фоне – выставляем максимальный импульс (1/1 – 1/4) и подбираем настройки экспозиции по этому импульсу

использование направленного (прямо на объект, без насадок), отраженного или рассеянного света – при использовании вспышки на отражение или применение рассеивающих насадок (рассеивающие колпачки, мини-софтбоксы) снижает интенсивность светового потока. Поэтому чаще всего для отраженного или рассеянного света от вспышки можно выбирать более мощный импульс, чем при использовании направленного света от «голой» вспышки

Режим вспышки TTL

Режим TTL, который может буквенно обозначаться по-разному в зависимости от производителя. Смысл один и тот же — это режим автоматического подбора настроек вспышки. В современных вспышках Canon этот режим обозначается ETTL, в Nikon – i-TTL.

Аббревиатура TTL происходит от «Through The Lens», что дословно переводится «через объектив». Это означает, что автоматический экспозамер для подбора настройки мощности вспышки происходит путем оценки освещенности в кадре через линзы объектива. Для этого используется предварительный оценочный импульс, который позволяет произвести замер экспозиции. Преимущество такого метода замера экспозиции позволяет учесть характеристики используемого объектива – во время замера делаются поправки на светосилу объектива, накрученные фильтры и насадки и угол обзора.

Технология TTL претерпела несколько модификаций за время развития фототехники. Так, в старых пленочных зеркальных фотоаппаратах для автоматического управления вспышкой использовалась технология замера по инфракрасному импульсу (A-TTL в камерах Canon), затем модифицировалась в замер по предварительному импульсу (ETTL  в камерах Canon). Последняя модификация (ETTL-II в камерах Canon) также учитывает расстояние от точки съемки до объекта в кадре.

При выборе вспышки обращайте внимание, поддерживает ли она технологию TTL (вашего производителя, соответственно). Так, существуют мануальные вспышки, которые совсем не поддерживают автоматический режим работы. Также бывают вспышки, которые поддерживают, например, более старую технологию, чем ваша камера. Например, у вас новая камера с режимом ETTL-II, а вспышка поддерживает только ETTL. Это не означает, что они не совместимы; техника, которая работает на более продвинутых технологиях автоматического замера, обычно поддерживает и менее продвинутые. Таким образом, вы будете работать с технологией ETTL, а не ETTL-II.

Аналогично выглядит обратная ситуация. Например, вы надеваете последнюю модель вспышки с поддержкой ETTL-II на старенькую камеру. Если вспышка «родная» (т.е. к камере Canon – вспышка Canon и т.д.), то система «фотоаппарат» — «вспышка» автоматически сориентируется и определит технологию доступную взаимодействия.

Съемка со вспышкой в автоматическом режиме, по сути, напоминает съемку в режиме «Авто» на фотоаппарате. Ваша камера замеряет экспозицию и подбирает подходящее (на ее взгляд) значение мощности импульса вспышки и параметр «зум» в зависимости от типа объектива (выставленное фокусное расстояние определяется автоматически даже при использовании зум-объектива). Причем, совсем не обязательно использовать вспышку в режиме TTL, только когда на фотоаппарате выставлен автоматический или полуавтоматический режим. Эти два режима никак не привязаны друг к другу. Вы можете спокойно снимать в ручном режиме M на фотоаппарате и использовать режим автоматического управления вспышкой.

В большинстве случаев вспышка сработает нормально для заданного сюжета. Но следует понимать, что автоматика фототехники не может учитывать все тонкости и особенности съемки. Автоматический расчет строится исходя из средней освещенности средне-серых объектов в кадре. Причем расчеты в автоматического замера экспозиции для настройки вспышки нормально срабатывают только при направлении вспышки «в лоб» и использовании вспышки либо на «горячем башмаке», либо на синхронизаторе с поддержкой режима TTL. Задача для автоматики усложняется, когда вспышка работает на отражение – автоматически сложно рассчитать, как упадет отраженный свет на объект. Камера не может оценить, под каким углом и на какое расстояние отразится свет вспышки. В результате настройки выставляются уже примерно.

Также существует множество ситуаций, когда имеет смысл перейти в ручной режим управления вспышкой. Чаще всего я работаю именно в ручном режиме вспышки – мне так проще отконтролировать процесс. Режим TTL подходит, прежде всего, для начинающих фотографов, которым трудно разобраться с настройками, а также для ситуаций, когда вам либо некогда, либо просто не хочется задумываться о настройках вспышки, а сюжет меняется очень быстро (репортажная съемка, путешествие и т.п.).

Даже в режиме TTL есть возможность вносить корректировку в работу вспышки. Для этого существует настройки компенсации вспышки, которая аналогична настройке экспокоррекции в фотоаппарате. Компенсация вспышки позволяет установить импульс ярче или слабее, чем значение, рассчитанное автоматически. При этом вручную задается значение по шкале (от -3 до +3 ступеней экспозиции), на которое вы компенсируете мощность вспышки. Так, если при съемке в автоматическом режиме вспышки при съемке тестового кадра вам кажется, что вспышка сработала недостаточно мощно, выставляем экспокоррекцию в плюс, и наоборот.

Для встроенной вспышки существует аналогичная настройка, которую можно выставить в Меню фотоаппарата. Меню — > Компенсация вспышки или Меню -> Управление вспышкой — > Встроенная вспышка — > Компенсация вспышки. Путь к настройкам может отличаться в зависимости от производителя и модели камеры. Если не можете найти эти настройки «методом тыка», открывайте инструкцию.

Также в настройках фотоаппарата Меню -> Управление вспышкой существует настройка экспозамера при работе со вспышкой. Если у вас сюжет со сложным освещением (съемка против солнца, например) или вам нужно при помощи вспышки правильно подсветить и проэкспонировать только одну часть кадра, выбирайте точечный или частичный режим экспозамера. Иначе камера замеряет освещенность по всей площади кадра, и все объекты становятся равнозначными. В результате подбор настроек может дать недосвет на одних объектах или пересвет на других.

Чаще всего вспышка в режиме TTL дает достаточно мощный импульс, особенно при съемке ночью. В итоге на фотографии – белые лица, черный фон, а вспышка срабатывает на максимальной мощности, что приводит к быстрому перегреву и расходу батареек. Выход – учиться снимать в мануальном режиме или умело использовать компенсацию вспышки.

Режим Multi

 

Если в режимах Manual и TTL вспышка делает только один импульс за время выдержки, то в режиме Multi вспышка срабатывает несколько раз за время, пока открыт затвор фотоаппарата. В результате можно получать интересные эффекты – несколько изображений одного и того же объекта в одном кадре, без использования какой-либо обработки.

Режим Мульти – это также режим, который полностью управляется вручную. Но помимо параметров мощности импульса и зума вспышки (как в режиме M), вам необходимо задать еще 2 параметра:

Количество импульсов – сколько раз сработает вспышка

Частота импульсов (в Гц) – чем больше частота, тем меньше будет промежуток времени между двумя соседними импульсами вспышки

Не все вспышки поддерживают режим Multi. Скажу больше – в большинстве вспышек этого режима обычно нет. Но этот режим используется в основном для специфической или экспериментальной съемки. В ежедневной работе этот режим бесполезен. Если он есть в вашей вспышке – отлично, можно побаловаться! Если его нет – не отчаивайтесь, не так уж велика потеря. Подробнее о съемке со вспышкой в режиме Мульти я рассказывала в своем онлайн-курсе «Цифровая фотография – это легко!» Начальный уровень.

Подробнее про работу со вспышкой в режиме Manual в помещении смотрите в записи МК «Работа с внешней вспышкой в помещении».

studyfoto.ru

Вспышка в фотоаппарате. Режимы работы фотовспышки.

Поговорим о встроенных и внешних фотовспышках. Если сравнивать любительский компакт и зеркалку, то их можно объединить по наличию встроенной вспышки.


ВСТРОЕННАЯ ВСПЫШКА

Встроенная вспышка необходима, когда кадр нужно сделать любой ценой в плохих условиях освещения. Но цена использования встроенной фотовспышки может оказаться слишком высокой. Это потому, что встроенная вспышка находится слишком близко к оптической оси объектива фотоаппарата. Из-за этого изображения, снятые с использованием встроенной вспышки, получаются слишком плоскими, неизбежно за объектом съемки появляется тень. Так же появляется эффект красных глаз.



Встроенная фотовспышка

ВНЕШНЯЯ ВСПЫШКА

Намного лучшего результата можно добиться при использовании внешней вспышки. Если мы направим внешнюю фотовспышку «в лоб», то характер освещения будет мало отличаться от встроенной вспышки. Однако из-за большей мощности внешней фотовспышки мы можем освещать объект на большем расстоянии.

Второе применение вспышки «в лоб» – это подсветка теней на ярком солнце. Дело в том, что внешние вспышки могут синхронизироваться с затвором камеры во всем диапазоне выдержек.


Внешняя фотовспышка

Но главным достоинством внешней вспышки является поворотная голова. Для освещения объекта съемки можно использовать отраженный свет. Чаще всего для отражения используется потолок или светлые стены. Если объект находится прямо перед вами, то направьте фотовспышку в потолок или в стену. Если объект находится на некотором удалении от Вас, то нужно немного повернуть голову вспышки.


Отражатель для фотовспышки

Но из одной внешней вспышки можно сделать два источника освещения, для этого нужно использовать небольшой отражатель. Тогда часть света будет отражаться от потолка, а часть – от отражателя. Таким образом, мы получим два источника освещения. Не стоит забывать, что для отражения света от слишком высокого или темного потолка Вам может просто не хватить мощности фотовспышки. Тем более не нужно поднимать голову вспышки при съемке на улице, там придется освещать исключительно светом «в лоб».

Режимы работы вспышек

Рассмотрим режимы на внешних фотовспышках при работе с зеркальной фотокамерой. Сначала разберем синхронизацию импульса вспышки с работой затвора камеры. Дело в том, что длительность импульса вспышки очень маленькая и равна, примерно, нескольким мили секундам. Поэтому при съемке с применением фотовспышки можно заморозить движение объекта на снимке.

Затвор камеры имеет такую характеристику как выдержка синхронизации – это самая короткая выдержка, при которой затвор камеры открыт полностью. На более коротких выдержках затвор камеры не открывается полностью, а экспонирует кадр через щель, образованную шторками или ламелями затвора. Не трудно сделать вывод, что на выдержках короче выдержки синхронизации импульс вспышки будет высвечивать не весь кадр, а ту самую щель между створками затвора. Попробуйте поднять встроенную фотовспышку вашей камеры и установить выдержку короче выдержки синхронизации. Скорее всего, у Вас ничего не получиться.



Режим высокоскоростной синхронизации в фотовспышке

Однако внешние вспышки могут работать в режиме высокоскоростной синхронизации. В этом режиме они могут синхронизироваться с затвором на выдержках короче выдержки синхронизации. Дело в том, что внешние фотовспышки умеют растягивать длину импульса на все время экспонирования кадра. На практике это означает, что Вы сможете применять внешнюю вспышку, например, при съемке в солнечный день на коротких выдержках для подсветки теней. Здесь стоит обратить внимание, что недорогие модели сторонних фирм не всегда поддерживают высокоскоростную синхронизацию. Кроме того не стоит забывать что высокоскоростная синхронизация работает лишь при стандартном положении головы вспышки, что можно увидеть на дисплее фотовспышки по наличию аббревиатуры «HSS».



Режим синхронизации по задней шторке

Если же мы снимаем движущиеся объекты на длинных выдержках мы можем столкнуться с другой проблемой. На длинной выдержке движущийся объект в кадре оставляет эффектный след, но автоматика камеры устроена таким образом, что импульс вспышки срабатывает в самом начале экспозиции, и на кадре мы будем иметь замороженный объект и перед ним размазанный след. Это буде неестественно. Что бы след оставался за объектом съемки, что смотрится более естественно, следует применять режим синхронизации по задней шторке. В этом случае импульс фотовспышки будет срабатывать в конце экспозиции кадра. Стоит отметить, что этот режим работает и со встроенной вспышкой, в том числе и в некоторых компактных камерах.



Режим беспроводной синхронизации

Некоторые камеры и фотовспышки поддерживают режим беспроводной синхронизации. Для начала нужно установить режим беспроводной синхронизации в самой камере. Стоит помнить, что не все модели фотоаппаратов поддерживают этот режим. Как правило, такой режим поддерживают камеры не хуже полупрофессиональных зеркалок. Далее необходимо перевести в этот же режим саму вспышку. Теперь вспышка (можно использовать и две вспышки) синхронизируются от встроенной вспышки фотоаппарата. В первый момент времени происходит синхронизация внешних фотовспышек от встроенной. В это время система экспозамера камеры измеряет освещенность объекта съемки. После чего информация о необходимой мощности импульса передается внешним вспышкам и лишь после этого открывается затвор камеры и делается снимок. Все эти операции занимают несколько долей секунды.


Теперь разберемся с практическим применением этого режима. Допустим нужно сныть небольшой объект на идеально белом фоне (например, на фоне листа бумаги) в домашних условиях. Если сфотографировать объект с использованием, установленной на камере, внешней вспышкой, то на кадре будут видны тени от объекта. Если использовать для этой задачи две беспроводные фотовспышки, то тени исчезнут, и будет виден на снимке только объект. Только нужно правильно расставить вспышки с использованием отраженного света от любой белой поверхности (использовать еще лист бумаги) для рассеивания света, освещающего объект.

Как настроить правильную экспозицию.

Влияние экспозиции на качество снимков и как управлять этим параметром.

Как фотокамера определяет экспозицию?

vybrat-tekhniku.ru

Ведущее число фотовспышки — Википедия

Материал из Википедии — свободной энциклопедии

Шильдики с таблицами определения диафрагмы, составленные на основе ведущего числа советских фотовспышек «Электроника Л5-01» (слева) и «СЭФ-3» (справа)

Ведущее число фотовспышки — условное число, описывающее мощность одноразовой или электронной фотовспышки, и позволяющее легко вычислять правильную экспозицию для импульсного освещения. Более мощной вспышке соответствует более высокое значение ведущего числа. Удвоение ведущего числа означает удвоение расстояния, на котором возможна нормальная съёмка. Ведущее число относится только к экспозиции, получаемой фотоматериалом или матрицей от светового импульса вспышки, и никак не отражает экспозицию от непрерывного освещения, определяемую выдержкой затвора.

Выдержка при съёмке с освещением импульсной газоразрядной лампой определяется продолжительностью самого светового импульса, которая всегда значительно короче времени полного открытия затвора фотоаппарата. Поэтому для неавтоматических электронных фотовспышек регулирование экспозиции может осуществляться только изменением диафрагмы объектива и расстояния до освещаемого объекта. Ведущее число определяется как произведение расстояния на эффективное относительное отверстие объектива, при котором получается правильно экспонированный снимок усреднённого объекта

[1].

Ведущее число = расстояние × диафрагменное число

Эта простая зависимость получается в результате того, что освещённость обратно пропорциональна квадрату расстояния от источника света, в то время, как светопропускание объектива обратно пропорционально квадрату диафрагменного числа. Ведущее число может рассчитываться для расстояний, измеряемых как в метрах, так и в футах[2]. При этом его значение будет различным, но останется экспозиционной константой для конкретного типа фотовспышки. Кроме того, ведущее число может вычисляться для различных значений светочувствительности фотоматериала или матрицы, но для современных вспышек как правило, оно указывается для ISO 100, что оговаривается в документации. Ведущее число советских электронных вспышек указывалось для чувствительности 130 ед. ГОСТ

[3][4]. Так, ведущее число в 20 метров означает, что фотовспышка способна обеспечивать нормальную экспозицию на расстоянии 10 метров при диафрагме f/2 (20 = 10 × 2). Для того же ведущего числа при диафрагме f/8 нормальная экспозиция будет получена на расстоянии 2,5 метра (20 = 2,5 × 8).

Объектив GN Auto-Nikkor 2,8/45 со шкалой ведущих чисел (на снимке не видна)

Правило ведущего числа было единственным способом определения экспозиции неавтоматических вспышек. Подавляющее большинство отечественных приборов импульсного света, остававшихся неавтоматическими до конца производства, снабжались таблицей, составленной на основе ведущего числа. Зная ведущее число, можно вычислить требуемую диафрагму по дистанции фокусировки объектива и без таблицы. Для этого после наводки на резкость со шкалы дистанций объектива считывается расстояние, на которое нужно поделить ведущее число. Например, если снимаемый объект находится на расстоянии 3 метра, то при ведущем числе вспышки 30 диафрагменное число должно составлять 10. В результате выбирается его ближайшее значение из стандартного ряда — f/11. Такой способ вычисления пригоден в случае установки вспышки в башмак фотоаппарата. При использовании импульсного осветителя, установленного отдельно от камеры, учитывается расстояние от него до объекта съёмки. Расположение фотоаппарата в этом случае не имеет значения.

На постоянстве ведущего числа был основан ряд технологий автоматизации съёмки со вспышкой[5]. Так, корпорацией Nippon Kogaku в 1969 году был выпущен объектив «GN Nikkor» 2,8/45 (англ. GN — Guide Number, ведущее число) с механической связью колец фокусировки и диафрагмы[6]. На специальной шкале оправы объектива выставлялось ведущее число фотовспышки, в результате чего кольца дистанции и предустановки прыгающей диафрагмы соединялись, обеспечивая постоянство соотношения расстояния и относительного отверстия. При фокусировке на разные расстояния кольцо диафрагмы автоматически поворачивалось, обеспечивая правильную экспозицию главного объекта съёмки, на который производилась наводка[7].

Современные автоматические фотовспышки самостоятельно регулируют мощность импульса за счёт изменения его длительности, и их ведущее число является переменным, соответствуя текущим чувствительности, расстоянию и диафрагме[8]. В этом случае ведущее число, указанное в маркировке вспышки обозначает её максимальную мощность, как правило, многократно превосходящую реально используемую в большинстве ситуаций. Возможность регулировки угла освечивания в зависимости от фокусного расстояния объектива, позволяет концентрировать световой поток в пределах сравнительно узких углов, обеспечивая более эффективное использование мощности с длиннофокусными объективами. Для этого используется система из плоских линз Френеля, работающая как афокальная насадка на лампу. В этом случае правило ведущего числа перестаёт работать, поскольку сфокусированный свет вспышки не подчиняется закону обратных квадратов.

Интенсивность света электронных вспышек вычисляется по правилу ведущего числа только при условии отсутствия линз и рассеивателей, а также при прямом освещении[9]. Правило перестаёт работать при установке насадок и при использовании света вспышки, отражённого от стен и потолка. Эти отклонения можно скомпенсировать, вычислив новое ведущее число, приближённо соответствующее полученной интенсивности импульса. В большинстве случаев такие расчёты производятся путём пробных съёмок и анализа полученных снимков. В современной фотографии, когда экспозиция регулируется автоматически, ведущее число в практической работе не используется, а является мерой мощности импульсного осветителя. Часто максимальное ведущее число отражается в названии модели конкретной вспышки, выполняя рекламную роль. Большинство встроенных вспышек относительно маломощны и обладают ведущим числом не более 5 метров, в то время, как мощные приборы могут давать импульс с ведущим числом до 80 метров.

  1. ↑ Хеджкоу, 2004, с. 250.
  2. ↑ Фотомагазин, 1995, с. 16.
  3. ↑ Общий курс фотографии, 1987, с. 129.
  4. ↑ Фотокинотехника, 1981, с. 44.
  5. ↑ Фотоаппараты, 1984, с. 96.
  6. ↑ 45mm f2.8 GN (Guide Number) Auto Nikkor Lens (англ.). Photography in Malaysia. Дата обращения 23 сентября 2013.
  7. ↑ Неавтофокусные объективы Nikkor, 2004, с. 57.
  8. ↑ Фотомагазин, 1995, с. 17.
  9. ↑ Краткий справочник фотолюбителя, 1985, с. 142.
  • Фомин А. В. Глава VI. Фотосъёмка // Общий курс фотографии. — 3-е изд., перераб. и доп. — М.: Легпромбытиздат, 1987. — С. 116—136. — 256 с. — 50 000 экз.
  • Шульман М. Я. Фотоаппараты / Т. Г. Филатова. — Л.: Машиностроение, 1984. — 142 с.
  • Борис Бакст. Неавтофокусные объективы Nikkor / И. А. Бажан. — М.: Библиотека «Фотокурьера», 2004. — С. 57. — 196 с. — ISBN 5-9900215-1-8.
  • Е. А. Иофис. Фотокинотехника / И. Ю. Шебалин. — М.: Советская энциклопедия, 1981. — С. 44. — 447 с.
  • Панфилов Н. Д., Фомин А. А. Краткий справочник фотолюбителя. — 3-е изд. — М.: Искусство, 1985. — С. 136—147. — 367 с.
  • Джон Хеджкоу. Фотография. Энциклопедия / М. Ю. Привалова. — М.: «РОСМЭН-ИЗДАТ», 2004. — 264 с. — ISBN 5-8451-0990-6.
  • Шеклеин А. В. Система современной вспышки // «Фотомагазин» : журнал. — 1995. — № 6. — С. 16—22. — ISSN 1029-609-3.

ru.wikipedia.org

Значение слова ФОТОВСПЫШКА. Что такое ФОТОВСПЫШКА?

  • ФОТОВСПЫ́ШКА, -и, род. мн.шек, дат.шкам, ж. Мгновенное сильное освещение какого-л. объекта при фотографировании, а также источник света для такого освещения.

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

  • Фотовспы́шка, импульсный фотоосветитель, ИФО — источник искусственного освещения, предназначенный для создания кратковременных световых вспышек большой интенсивности. Применяется в фотографии при условиях недостаточной освещённости и съёмке быстродвижущихся объектов, а также в качестве рабочего освещения в фотостудиях.

    В современной фотографии в подавляющем большинстве используются электронные фотовспышки. Достоинством фотовспышек по сравнению с источниками постоянного света является более высокая энергетическая эффективность, благодаря возможности кратковременной работы только при открытом затворе. Кроме того, фотовспышка позволяет получать резкие фотографии быстродвижущихся объектов за счёт очень короткого времени свечения.

Источник: Википедия

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Когда-нибудь я тоже научусь различать смыслы слов.

В каком смысле употребляется прилагательное поисковый в отрывке:

Ещё нужно учитывать и будущих посетителей, которые будут наблюдать заголовок в поисковой выдаче, и принимать решение о переходе на эту страницу.

В прямом
смысле

В переносном
смысле

Это устойчивое
выражение

Это другое
прилагательное

kartaslov.ru

Синхронизация фотовспышки — Википедия

Неполное экспонирование кадра в результате неправильной синхронизации электронной фотовспышки. Нижняя часть кадра экспонирована только постоянным освещением

Синхрониза́ция фотовспы́шки — согласование моментов срабатывания фотовспышки и затвора фотоаппарата, необходимое для полноценного экспонирования импульсным освещением фотоматериала или фотосенсора. Синхронизация может осуществляться вручную на длительной выдержке, или автоматически при помощи синхроконтакта[1].

В фотоаппаратах с механическим или электромеханическим затвором роль синхроконтакта выполняет электрический контакт, который замыкается движущимися деталями. В цифровых фотоаппаратах за синхронизацию чаще всего отвечает центральный микропроцессор. Электрическое соединение затвора с фотовспышкой осуществляется синхрокабелем с коаксиальным PC-разъёмом, через горячий башмак или при помощи синхронизатора, использующего инфракрасное излучение или радиосвязь.

Синхроконтакты в Фотоаппаратах появились задолго до изобретения электронных фотовспышек, и были рассчитаны на работу с одноразовыми фотобаллонами, срабатывавшими с задержкой. Все выпускавшиеся лампы делились на несколько категорий в зависимости от времени свечения и задержки срабатывания. Основными считались категории S (англ. Slow, медленный 0,02 секунды), M (англ. medium, средний 0,015 секунды), MF (англ. Medium Fast средний быстрый), F (англ. fast, быстрый 0,005—0,01 секунды) и FP (англ. flat-peak, focal plane «плоский пик», «фокальный» 0,03—0,05 секунды)[2]. Последний тип ламп с самым длинным импульсом выпускался специально для фотоаппаратов с фокальным затвором и позволял вести съёмку на любых выдержках[3]. Продолжительность измерялась между моментами, когда яркость лампы составляла половину пикового значения[4]. Кроме длительности импульса разные типы ламп отличались задержкой срабатывания, измеряемой в миллисекундах от замыкания синхроконтакта до момента достижения половины пикового значения яркости (время до «полпика»)[5]. Так, для ламп типа S задержка составляла 25—30 миллисекунд, M — 18—20 миллисекунд, F — 5 миллисекунд, а для баллонов FP упреждение не требовалось[6]. В Германии выпускался ещё один промежуточный тип X с продолжительностью свечения 0,01 секунды и задержкой 10—18 миллисекунд.

  • Фотоаппарат со вспышкой и одноразовым баллоном

  • Шкала синхронизации фотоаппарата Leica III

  • Синхроконтакты «M» и «X» на корпусе фотоаппарата «Зоркий-5»

  • Переключаемый синхроконтакт фотоаппарата Minolta

Первые фотоаппараты, оснащённые синхроконтактом, как правило имели дополнительный регулятор опережения, размеченный в миллисекундах. Он выполнялся в виде рычажка или отдельного диска, как правило расположенного соосно с диском выдержек и снабжённого шкалой. От правильной установки регулятора зависела эффективность использования света вспышки: её длительность допускала ошибки синхронизации, но пиковое значение яркости могло быть упущено, приводя к неправильной экспозиции. В наибольшей степени это касалось центральных затворов, которые использовали импульс одноразовых вспышек не полностью, особенно на коротких выдержках. Со временем одноразовые баллоны стали уступать место электронным фотовспышкам, и их ассортимент начал уменьшаться. Это отразилось на упрощении регулятора опережения, утратившего шкалу, вместо которой стали наноситься несколько символов. Количество позиций в конце концов сократилось до двух: «X» и «M»[4]. Некоторые фотоаппараты вместо регулятора оснащались двумя разъёмами синхроконтакта с фиксированным упреждением: один срабатывал без задержки, а другой поддерживал наиболее массовые фотоколбы серии «M», обеспечивая опережение на 10—15 миллисекунд[1][7]. В СССР на шкалах корректоров встречалось обозначение «MF». Иногда вместо букв наносились символы молнии и лампы, соответствующие электронной вспышке и одноразовым баллонам.

Электронная фотовспышка «Hanimex» с синхроконтактом

Ксеноновая лампа электронной вспышки не требует никакого упреждения, срабатывая мгновенно при замыкании синхроконтакта. Поэтому, для работы с электронными ИФО используется положение регулятора опережения X (англ. Xenon). В таком режиме контакты вспышки замыкаются точно в момент полного открытия затвора, обеспечивая экспонирование всей площади фотоматериала. Электронные фотовспышки наиболее эффективны в сочетании с центральным затвором, свободным от проблем синхронизации, и допускающим съёмку на любой выдержке, поскольку экспонирование кадра всегда происходит одновременно по всей площади. Кроме того, световой импульс электронной вспышки используется полностью, в отличие от одноразовой, потери которой возрастают на коротких выдержках.

В случае фокального затвора использование электронных вспышек возможно лишь в ограниченном диапазоне выдержек, соответствующих полному открытию кадрового окна[8]. Поскольку выдержка в шторно-щелевых затворах задаётся шириной щели между шторками, её размер при срабатывании вспышки должен быть равен кадру или превосходить его. В противном случае будет экспонирована только часть кадра, соответствующая мгновенному положению щели[9]. Величина минимальной выдержки, при которой затвор ещё открывается полностью, зависит от его конструкции, и является одной из важнейших характеристик. Эта выдержка зависит от скорости движения щели в момент срабатывания затвора, и от размеров кадрового окна. Она называется выдержкой синхронизации, и обозначается символами «Х-sync» или «flash-sync».

Минимальная выдержка, на которой возможна синхронизация с электронной вспышкой, обусловливает возможность использования «заполняющей вспышки» при ярком дневном свете. Для шторно-щелевых затворов типа Leica с горизонтальным ходом матерчатых шторок типичная выдержка синхронизации составляет 1/30 секунды. Совершенствование затворов и увеличение скоростей шторок позволили к середине 1950-х годов укоротить этот параметр до 1/60 секунды. В 1960 году в Японии был разработан затвор типа Copal Square с вертикальным ходом металлических ламелей вдоль короткой стороны малоформатного кадра. Его конструкция позволила сократить выдержку синхронизации до 1/125 секунды[10]. Для современных цифровых зеркальных камер с ламельными затворами типичные выдержки синхронизации составляют 1/200 — 1/250 с. Профессиональные фотоаппараты могут обеспечивать синхронизацию на выдержках до 1/500 секунды (Canon EOS-1D[11], Nikon D1), считающейся предельной для центральных затворов[10].

Съёмка на ещё более коротких выдержках возможна в режиме высокоскоростной синхронизации HSS (англ. High Speed Synchronization), который поддерживается некоторыми моделями фотовспышек. При этом вместо одного импульса излучается серия менее мощных — «растянутый импульс», который позволяет получить полностью экспонированный кадр на очень коротких выдержках вплоть до 1/4000 — 1/8000 с[12]. Технология разработана компанией Olympus и впервые использована в зеркальных фотоаппаратах «OM-3 Ti» и «OM-4 Ti»[2]. Процесс очень похож на работу одноразовых вспышек категории «FP», и поэтому часто обозначается этими же символами. Недостатком метода является невысокая эффективность использования энергии вспышки, часть которой не участвует в экспонировании снимка, как и в случае одноразовых баллонов «FP». Из-за распределения энергии вспышки на более продолжительном отрезке времени освещенность, которую она создает, пропорционально уменьшается. При сильном диафрагмировании в солнечную погоду энергии такой вспышки может не хватать для подсветки теней.

Выдержки синхронизации у различных фотоаппаратов с фокальным затвором:

  • Nikon D1, D40, D50, D70, Canon EOS-1D — 1/500 c.;
  • Canon EOS-1D Mark IV — 1/300 с.;
  • Pentax Z-5, Nikon FE2, Canon EOS 50D, Nikon D3 — 1/250 с.;
  • Canon EOS 5D Mark II, Nikon D600 — 1/200 с.;
  • Canon EOS 6D, Pentax K10D — 1/180 с.;
  • Pentax *ist D — 1/150 с.;
  • Nikon FM, Pentax K2 — 1/125 с.;
  • Pentax ME, Minolta XK — 1/100 с.;
  • Canon F-1, Canon EOS 300 — 1/90 с.;
  • Nikon F2 — 1/80 с.;
  • Pentax LX — 1/75 с.;
  • Nikon F, Pentax K1000, Друг — 1/60 с.;
  • Leica M7 — 1/50 c.;
  • Зенит-Е, Киев-88, Hasselblad 1600F — 1/30 с.;
  • Старт — 1/25 с.;
  • Leica IIIf — 1/20 с.;
  1. 1 2 Фотокинотехника, 1981, с. 297.
  2. 1 2 Leo Foo. Flash Bulbs (англ.). Additional info on Nikon Speedlights. Photography in Malaysia. Дата обращения 8 декабря 2015.
  3. ↑ Фотоаппараты, 1984, с. 66.
  4. 1 2 Что такое синхронизация? (рус.). Конструкция фотоаппаратов. Zenit Camera. Дата обращения 11 декабря 2015.
  5. ↑ Симонов, 1959, с. 24.
  6. ↑ Photolamp and Lighting Data (англ.). Booklet. General Electric. Дата обращения 8 декабря 2015.
  7. ↑ Советское фото, 1961, с. 26.
  8. ↑ Foto&video, 1998, с. 51.
  9. ↑ Общий курс фотографии, 1987, с. 30.
  10. 1 2 Советское фото, 1977, с. 40.
  11. Phil Askey. Canon EOS-1D Review (англ.). Reviews. DP Review (November 2001). Дата обращения 30 декабря 2013.
  12. ↑ Фотомагазин, 1995, с. 18.
  • П. Деревянкин. Каким должен быть затвор фотокамеры (рус.) // «Советское фото» : журнал. — 1961. — № 4. — С. 27—29. — ISSN 0371-4284.
  • Е. А. Иофис. Фотокинотехника / И. Ю. Шебалин. — М.,: «Советская энциклопедия», 1981. — С. 297. — 447 с. — 100 000 экз.
  • Владимир Родионов. Свет добавляйте по вкусу (рус.) // «Foto&video» : журнал. — 1998. — № 2. — С. 50—53.
  • Фомин А. В. Глава I. Фотоаппараты // Общий курс фотографии / Т. П. Булдакова. — 3-е. — М.,: «Легпромбытиздат», 1987. — С. 25—43. — 256 с. — 50 000 экз.
  • А. В. Шеклеин. Система современной вспышки (рус.) // «Фотомагазин» : журнал. — 1995. — № 6. — С. 16—22. — ISSN 1029-609-3.
  • М. Я. Шульман. Фотоаппараты / Т. Г. Филатова. — Л.: «Машиностроение», 1984. — 142 с. — 100 000 экз.

ru.wikipedia.org

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *